
I 

L' * -* NASAlNAG-1 -~~~/R/~.O/NCSU.CSC.(DFM,KCT,MAV)/OC~-~~ 1 

. 
/ N  Semiannual Project Report Submitted to the , ' 

4 " /-- 2- 

P,@ NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Langley Research Center, Hampton, Va. 

for research entitled 

EXPERIMENTS IN FAULT TOLERANT SOFWARE 
RELIABILITY 

(NAG-I -667) 

from 

David F. McAllister, Co-Principal Investigator, Professor 
K.C. Tai, Co-Principal Investigator, Professor 

Mladen A. Vouk, Co-Principal Investigator, Assistant Professor 

Department of Computer Science 
North Carolina State University 

Raleigh, N.C. 27695-8206 
(91 9) 737-2858 

Report Period 
Beginning Date: April 1, 1987. 

Ending Date: September 30,1987. 

(NASA-CR-181554) EXPERIMENTS IN FAULT ~ a 8 - 1 3 8 6 3  

Proqress Report, 1 Apr, - 3 0  Sep.  1987  
m a -  13066 

(North Carolina S t a t e  I laiv,)  1(!0 p A vd il: Onclas 
"TIS HC A05/MF A01 CSCL 03tr ~ 3 1 6 1  0111679 

T O L E R A N T  SOFTWARE R E L I B B I  LITY Sem iaxinual 
--THRO-- 



N ASNNAG-1 -667/R/3 .O/NCSU .CSC. (D FM , KCT, MAV)/Oct-87 
- *  

Table of Contents 

Project Progress Summary 

1. General Project Description 

2. Results 
2.1 Reliability of Voting in Fault-Tolerant Software 

2.2 Effectiveness of Back-to-Back Testing 
2.3 RSDIMU Recertification Testing 
2.4 Other Work in Progress 

Systems 

Bibliography 

Appendix I NCSU.CSC TR-87-16 

Appendix I I  NCSU.CSC TR-87-08 

Appendix 111 RSDIMU-ATS 3.0 

3 

4 

5 

7 

4 2 ‘ J  



N ASA/NAG- 1 -667/R/3 .O/NCSU.CSC. (DFM , KCT, MAV)/Oct-87 3 

Project Progress Summary 

In this project we proposed to investigate a number of experimental and 
theoretical issues associated with the practical use of fault-tolerant 
software (FTS). In the period reported here we have worked on the 
fo I lowi ng : 

O We evaluated the reliability of voting in fault-tolerant software 

O We investigated effectiveness of back-to-back testing process. 
O Version 3.0 of RSDIMU-ATS, a semi-automatic test bed for 

certification testing of RSDIMU software developed in a previous 
experiment, was prepared and distributed for a multi-university 
N-version programming certification effort. Certification of the 
functionally equivalent components was completed during the summer 

We continued studying software reliability estimation methods based 
on non-random sampling. 
We continued investigating existing and worked on formulation of new 
fault-tolerance models. 

system for small output spaces, 

a7. 
O 

O 

This report describes the results obtained in the period April 1, 1987 to 
September 30, 1987. 



NASA/NAG-1-667/R/3.O/NCSU. CSC. (DFM ,KCT, MAV)/Oct-87 4 

1. General Project Description 

In the period 1985-87 NASA funded a multi-university experiment to 
develop 20 functionally equivalent software versions which are to be used 
to determine the reliability gains of several common fault-tolerant 
software systems. These include the two common methods of N-version 
programming and recovery-block [Ran75, Avi841 and hybrid schemes such 
as the consensus recovery block technique [ S C O ~ ~ ] .  Our main goal was to 
investigate the reliability of N-version programming which requires the 
comparison of outputs of several functionally equivalent software 
components to determine correctness. An important related issue is how 
to test these components for reliability and capitalize on the fact that 
they are functionally equivalent. 

Although experimenters have shown that existing fault-tolerant software 
(FTS) techniques can achieve an improvement in reliability over 
non-fault-tolerant software systems, it has also been shown that failure 
dependence among FTS system components may not be negligible in the 
context of current software development and testing techniques [Nag82, 
sco84, Nag84, VOu85, Kni86, Ke1861. Correlated coincidental component 
failures may be disastrous in current FTS approaches and can seriously 
undermine any reliability gains offered by the fault-tolerance mechanisms 
[e.g. Sco83a, Sco84, Avi84, Eck85, Vou86aI. Hence it is important to detect 
and eliminate them as early as possible in a FTS life-cycle. 

This project is concerned with experimental and theoretical investigation 
of FTS problems. A four university effort to build and verify 20 
functionally equivalent software components implementing an abstraction 
of a redundant strapped down inertial measurement unit (RSDIMU) was 
completed this summer. Analysis of the results of the experiment is 
underway. In connection with this effort it was necessary to research 
software development and testing techniques, and FTS voting models in 
order to identify characteristics that are relevant to development of 
redundant software components intended for FTS. This report describes 
the results obtained in the period April 1 , 1987 to September 30, 1987. 

I In the period reported here we have worked on the following: 



N AS NN AG- 1 -667/R/3 .O/NC SU . C SC . ( D FM , KCT, MAV)/Oct-87 5 

We evaluated the reliability of voting in fault-tolerant software 
system for small output spaces. 
We investigated effectiveness of back-to-back testing process. 
Version 3.0 of RSDIMU-ATS, a semi-automatic test bed for 
certification testing of RSDIMU software developed in a previous 
experiment, was prepared and distributed for field testing in a 
multi-university N-version programming effort. Recertification of the 
functionally equivalent components was completed during the summer 
87. 
We continued studying software reliability estimation methods based 
on non-random sampling. 
We continued investigating existing and worked on formulation of new 
fault-tolerance models. 

2. Results 

2.1 Reliability of Voting in Fault-Tolerant Software 
Systems for Small Output Spaces 

Under a voting strategy in a fault-tolerant software system there is a 
difference between correctness and agreement. An independent N-version 
programming reliability model is proposed for treating small output 
spaces which distinguishes between correctness and agreement. System 
reliability is investigated using analytical relationships and simulation. A 
consensus majority voting strategy is proposed and its performance is 
analyzed 
strategy 
reliability 
absolute 
re1 iabili ty 
an upper 
l / r  is a 

and compared with other voting strategies. Consensus majority 
automatically adapts the voting to different component 
and output space cardinality characteristics. It is shown that 
majority voting strategy provides a lower bound on the 

provided by the consensus majority, and 2-of-n voting strategy 
bound. If r is the cardinality of the output space it is proved that 
lower bound on the average reliability of fault-tolerant system 

components below which the system reliability begins to deteriorate as 
more versions are added. 

Report on the execution time distributions is in Appendix I of this report. 



NASA/NAG-1-667/R/3 .O/NCSU .CSC. (D FM ,KCT, MAV)/Oct-87 6 

2.2 Effectiveness of Back-to-Back Testing 

Results are presented of an experiment in back-to-back testing using the 
functionally equivalent software versions mentioned earlier in this 
report. These versions were used to evaluate use of back-to-back testing 
in initial stages of the software testing process where a difference 
among outputs signals a potential system fault. It is shown that a 
significant increase in the probability of detecting failures can be 
achieved using back-to-back testing provided failure correlation between 
versions is sufficiently small. It was found that in some cases 
back-to-back testing may provide a failure detection gain even with 
relatively high correlation. Three models of back-to-back testing process 
of multiple functionally equivalent software versions are described and 
compared. Two models treat the case where version failures are 
independent while the third model describes the more realistic case 
where there is correlation among the failures. The cost of the approach 
over single version development is discussed briefly. 

Report on back-to-back testing is in Appendix II of this report. 

2.3 RSDIMU Certification Testing 

RSDIMU Acceptance Testing System (RSDIMU-ATS) version 3.0 was 
released to help test and analyze multiversion RSDIMU procedures during 
the certification phase of the experiment in the summer 1987. This 
system was released for restricted use by sites involved in the 
NASA-LaRC fault-tolerant software experiment. RSDIMU-ATS is intended 
for use in a UNlX environment and may need to be modified if UNIX-like, or 
non-VAX systems are used. Detailed release notes for version 3.0 are 
given in Appendix 111. 

Recertification of of the programs assigned to NCSU was completed during 
the summer 1987. 

2.4 Other Work in Progress 

Investigations in progress are continued study of the effectiveness of 
back-to-back testing, and a performance study of multistage 



N AS A/N AG- 1 -667/R/3.O/N C S U . C S C . ( D FM , KCT, MAV)/Oct-87 7 

fault-tolerant software systems. Reports on both activities are expected 
in the next report period. 

Bibliography 

[Ai841 

[Bri86] 

[Dur84] 

[ Eck8 51 

[Ehr85] 

[How871 

[Ke186] 

[Kni86] 

[McA87] 

[Nag821 

"841 

[Ran751 

[ s ag8 61 

[ Sco83aI 

[ S co8 3 b] 

[Sco84] 

[Sco87] 

[Vou85] 

[ Vou86aI 

Avizienis and J.P. Kelly, "Fault-Tolerance by Design Diversity: Concepts and 
Experiments", Computer, Vol. 17, pp. 67-80, 1984. 
S. Brilliant and J.C. Knight, "Testing Software Using Multiple Versions", University 
of Virginia, Department of Computer Science, Report No. RM-86-07, 1986. 
J.W. Duran and S.C. Ntafos, "An evaluation of random testing", IEEE Trans. Soft. 
Eng., Vol. SE-10, 438-444, 1984 
D.E. Eckhardt, Jr. and L.D. Lee, "A Theoretical Basis for the Analysis of 

Multiversion Software Subject to Coincident Errors", IEEE Trans. Soft. Eng., Vol. 

W. Ehrenberger, "Statistical Testing of Real Time Software", in "Verification and 
Validation of Real Time software", ed. W.J. Quirk, Springer-Verlag, 147-178, 1985. 
W.E. Howden, "Functional Program Testing and Analysis", McGraw-Hill Book Co., 
1987. 
J. Kelly, D. Eckhardt, A. Caglayan, J. Knight, D. McAllister, M. Vouk, "Early 
Results from the Second Generation Multi-Version Software Experiment", submitted 
for publication, 1986. 
J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the assumption of 
Independence in Multiversion Programming", IEEE Trans. Soft. Eng., Vol. SE- 12(1), 

D.F. McAllister, C.E. Sun, and M.A. Vouk, "Reliability of Voting in Fault-Tolerant 
Software Systems for Small Output Spaces", North Carolina State University, 
Department of Computer Science, Technical Report, TR-87- 16, submitted for 
publication, 1987. 
P.M. Nagel and J.A. Skrivan, "Software Reliability: Repetitive Run Experimentation 
and Modeling", BSC-40366, Boeing, Seattle, Wa., 1982 
P.M. Nagel, F.W. Scholz and J.A. Skrivan, "Software Reliability: Additional 
Investigation into Modeling with Replicated Experiments", NASA CR172378, Boeing, 
Seattle, Wa., 1984 
B. Randell, "System structure for software fault-tolerance", IEEE Trans. Soft. Eng., 

F. Saglietti and W. Ehrenberger, "Software Diversity -- Some Considerations about 
Benefits and its Limitations", Proc. IFAC SAFECOMP '86,27-34, 1986. 
R.K. Scott, "Data Domain Modeling of Fault Tolerant Software Reliability", Ph.D. 
Dissertation, North Carolina State University, Raleigh, North Carolina, 1983 
R.K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Experimental Validation of 
Six Fault-Tolerant Software Reliability Models", hoc. IEEE 14th Fault-Tolerant 
Computing Symposium, pp. 102-107, 1983 
R.K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Investigating Version 
Dependence in Fault-Tolerant Software", AGARD 361, pp. 21.1-21.10, 1984 
R.K. Scott, J.W. Gault and D.F. McAllister, "Fault-Tolerant Software Reliability 
Modeling", IEEE Trans. Software Eng., Vol SE-13,582-592, 1987. 
M.A. Vouk, D.F. McAllister, K.C. Tai, "Identification of correlated failures of 
fault-tolerant software systems", in Proc. COMPSAC 85,437-444, 1985. 
M.A. Vouk, D.F. McAllister, K.C. Tai, "An Experimental Evaluation of the 
Effectiveness of Random Testing of Fault-tolerant Software", Proc. Workshop on 

SE-11(12), 1511-1517, 1985. 

96-109, 1986. 

Vol. SE-1, 220-232, 1975. 



N AS A/N AG- 1 -667/R/3.O/N C S U . C S C. (D FM , KCT, MAV)/Oct-87 a 

Software Testing, Banff, Canada, IEEE CS Press, 74-81, July 1986. 
[Vou86b] M.A. Vouk, M.L. Helsabeck, K.C. Tai, and D.F. McAllister, "On Testing of 

Functionally Equivalent Components of Fault-Tolerant Software", hoc. COMPSAC 

[Vou86c] M.A. Vouk, and D.F. McAllister, "A Proposed Methodology for The Development of 
Fault-Tolerant Software", North Carolina State University, Department of Computer 
Science, Technical Report TR-86-11, 1986. 

[Vou87] M.A. Vouk, D.F. McAllister, D.E. Eckhardt, A. Caglayan, and J.P.J. Kelly, 
"Effectiveness of Back-to-Back Testing", North Carolina State University, Department 
of Computer Science, Technical Report TR-86-08, 1987, submitted for publication. 

86, 414-419, 1986. 



NASA/NAG-1-667/R/3.O/NCSU.CSC. (DFM ,KCT, MAV)/Oct-87 9 

Appendix I N88- 13864 



COMPUTER STUDIES 

TECHNICAL REPORT 

I Output Spaces 

McAllister. David F. 
Sun, Chien-En 

Vouk, M1 aden A. I TR-87-16 

North Carolina State University 
Raleigh, N. C. 27650 



Reliability of Voting in Fault-Tolerant Software Systems 
for Small Output Spaces 

David F. McAllister 
Chien-En Sun 

Mladen A. Vouk 

Department of Computer Science 
North Carolina State University 

Raleigh, NC 27695-8206 

Abstract 

Under a voting strategy in a fault-tolerant software system there is a difference between 
correcmess and agreement. An independent N-version programrmng reliability model is proposed 
for treating small output spaces which distinguishes between correcrness and agreement. System 
reliability is investigated using analytical relationships and simulation. A consensus majority voting 
strategy is proposed and its performance is analysed and compared with other voting strategies. 
Consensus majority strategy automatically adapts the voting to different component reliability and 
output space cardinality characteristics. It is shown that absolute majority voting strategy provides a 
lower bound on the reliability provided by the consensus majority, and 2-of-n voting strategy an 
upper bound. If r is the cardinality of the output space it is proved that 1h is a lower bound on the 
average reliability of fault-tolerant system components below which the system reliability begins to 
deteriorate as more versions are added 

*Research supported in part by NASA Grant No. NAG-1-667 



1 

I. Introduction 

Recent experiments with multiversion software have demonstrated the fact that identical and 
incorrect answers can occur with perhaps higher frequency than is expected [Sco84, Kni86, 
Vou85,86] particularly when small output spaces are involved. For example, if the output space is 
binary, (0,l) , then all incorrect responses must agree. Such phenomena make the fault-tolerant 
techniques of N-version programming [Avi77, Avi841 and Consensus Recovery Block 
[Sco83a,b,84,87] more likely to fail during the voting process since the voter may not be able to 
distinguish between c o m t  and incorrect responses. In the past models of fault-tolerant reliability 
have equated output agreement with correctness (e.g. [Sco83a,b, Sc0871) which is inadequate for 
complete modeling of such an environment. In this paper we distinguish between agreement and 
mrrecmess and develop a reliability model of a voting environment which can be used to determine 
the number of versions r e q u d  as a function of the cardinality of the output space. 

II. Voting Strategies in N-Version Programming 

In an m-of-n fault-tolerant software (FTS) system the number of functionally equivalent 
independently developed versions is n, and m is the agreement number or the number of 
matching outputs which the voting or adjudication algorithm requires for system success. In the 
past, because of cost restrictions, n was rarely larger than 3 and m was traditionally chosen as 

Ceiling[(n+l)/2] which we will call absolute majority voting. In [Sco87] Scott, Gault and 
McAllister show that if the output space is large and with true statistical independence of FTS 
versions, there is no need to choose m > 2 regardless of the size of n although considerable 
reliability gains occur with larger n. We wdl use the term 2-of-n voting for this case. 

With small output spaces we suggest that a third voting technique be considered, which we will call 
consensus majority voting . To motivate this technique consider the following scenario. 
Suppose we have n = 11 versions and output space cardinality of 3. Let a vector (ijJc) represent 
the frequencies of the three possible output states (i + j + k = n) and let the fmt component, i, 
represent the frequency of the correct output. In this case, absolute majority is 6, but vectors 
(5,3,3), (5,4,2), or (5,2,4) may represent likely events which will be declared a system failure 
under absolute majority voting. Furthermore, the vectors (4,4,3) and (4,3,4) are the only cases in 
which a correct answer occurs when exactly four versions agree. But if three is chosen as the 
agreement number, there always exists another output on which more than three versions agree. In 
such cases an obvious strategy is to choose the output with the largest frequency, if such exists. 



2 

When there is more than one choice, as in this example when the output state frequency vector is 
(5,5,1) or (5*1*5), and if choosing a wrong answer or having no answer has the same impact on 
the system, then choosing one result with five identical outputs at random is a better strategy (on 
the average) than declaring system failure. In this example then there is a 50 percent chance that the 
correct output will be selected when this formal strategy is used. 

In consensus majority voting the voter uses the following algorithm to select the "correct" answer 
- If there is an absolute majority agreement (2 Ceiling[(n+l)/2]) then this answer is chosen as the 

correc t " answer. 
- If there is a unique maximum agreement, but this number of agreeing versions is less than 

Ceiling[(n+l)/2], then this answer is chosen as the "correct" one. 
- If there is a tie in the maximum agreement number then one set is chosen at random and the 

answer associated with this set is chosen as the ''correct'' one. 

We discuss this strategy further in the following sections and compare it with 2-of-n and absolute 
majority voting. We will first develop the mathematics for treating the difference between 
agreement and correcmess. 

111. The Correctness Factor 

We first define a correctness factor ci which is the probability that an output is correct given that 

versions agree. If PrJi) is the probability that i versions are correct and Pr,(i) is the probabilir 

that i versions agree we have 

Ci = Pr( output is correct I i versions agree) 
= Pr( i versions are correct) / Pr(i versions agree) 
= / Pr,(i) 

Now 

Pr( i versions agree) = Pr( i versions agree and are correct) + 
Pr( i versions agree and are incorrect) (2) 

Also, using "correct" and "incorrect" to mean "output is correct" and "output is incorrect" 
respectively 



3 

Pr(incornct I i versions agree) + Pr(comt  1 i versions agree} = 1 

Hence, 

Pr( incorrect I i versions agree) = 1 - ci 

Using the data domain approach of Scott et. al. [Sco83&b], the reliability of an m-of-n system 
which we denote by bin becomes 

n n 

i=m i== 

We expect that the sequence 

C = (ci 1 i = 2, ... ,n) 

is nondecreasing, i.e. that the chance of an output being incorrect does not increase as the number 
of versions which agree increases. In particular, it is clear that 

and hence if, for all i, ci < 1 then Rmin < 1. 

For tractability we will assume that all software versions have the same reliability or probability of 
obtaining the correct answer for a given input. Let this reliability be p. Then we have 

where *Ci denotes the number of combinations of n items taken i at a time. It follows that 

(4) 
i n-i 

Pra (i) = Prc (i) + nCi (1-p) p 

In the following section we consider the impact of small output spaces on a voting strategy. 

Table 3.1 gives correcmess factors as a function of version reliabilities when the output space is 



binary. The cOrrccmess factors converge to 1 only for p>l/r where r is the size of the output space. 
(Indeed the sequence is decreasing for p < l/r) .This is not an accident as we will show in the 
following section. 

IV. Small Output Spaces 

Let the output space have cardinality r and assume as above that all versions have the same 
reliability p. We further assume, for tractability, that the probability of failure of a version is 
independent of the failure of any other. Assume a labeling of the outputs 1.2 ..., r such that output 

1 is the correct one and occurs n1 times. Let qi ,i22 denote the probability that the incomt  output 

i will occur q times where 

n1+ n2 + ... + nk = n 

and 

Then the probability that the correct output 1 will occur n1 times is 

( 5 )  
n! 

nl  ! n2!. ..nr! p"1 q? ... ,.r P, ( n l > =  C 
n 

where i >1. The reliability of an m-of-n system becomes 

n! 
n1 ! n2! .. .nr! 

ai = n-n, 
L c2 J 

Equation (6) does not allow for multiple incorrect outputs, however. Let M (i;n-) denote that i 

replaces n. in equation (5) .  That is, 
J 

1 



5 

"r 
n! 

nl! ... nk1! i! ...I+ I $1 @ ... qF11 q; ... q, M ( i ; n j ) =  

C n , = n - i  

It follows that the cmecmess factor ci then becomes 

(7) 

n! I p"1 q"-"l M ( i ; n j ) =  C nl! ... nFl! i! ...I+ - (9) 

j =  I 

where i lies between Ceiling[(n+l)/2] and n. The terns M(i;nj) are the probabilities of exactly i 

identical incorrect outputs where 21jSr. We note that the expression becomes considerably more 

complicated when i lies between Floor [(n+r-l)h] and Ceiling [(n+1)/2] since the M ( i ; n. J )'s may 

have terms in common, i.e., it is possible to have more than one output occurring more than i 
times. For example, in a case in which r=3 and n=l 1 it is possible that the correct output and one 
incorrect output can each occur 5 times for the same input. In this case the denominator of equation 
(8) overestimates the correct result We assume henceforth that i 2 Ceiling [(n+1)/2]. 

For tractability we also assume the occurrence of each incorrect output has the same probability q, 
and (r- 1)q = 1 -p. (This assumption is also 'best case' in the sense that different probabilities tend to 
effectively reduce the output space requiring higher version reliability. We will discuss this further 
in the last section.) Equation (7) then becomes 

h n k = n - i  

Then we have 
M(i;n2) = M(i;n3) = ... = M(i;nk) 

and equation (8) becomes 

M ( i ; n l )  
ci = M ( i  ; n1 ) + (r-1)M ( i ; "2) (10) 



6 

From [Tri82], the marginal probability function of M(i;nj) is given by 

M ( i ; nj )  = ,.,Ci q'(1-q)"' 

When i = n1 the equation becomes 

M ( i ; n1 = n ~ i  pi 

Substituting (1 1) and (12) into (10) gives 

[,c, Pi (1-Pri 1 
w. - 

(1 1) 

(12) 

(13) 

From our comments above and equation (3). it follows that we cannot have Rmln converging to 1 

unless the sequence (ci) converges to 1. In the following theorem we show that a necessary and 

sufficient condition that lim(ci) = 1 is that p > Vr. 

Theorem 4.1 ; 

The sequence {ci} is increasing and lirn {Ci} = 1 (as n->-) if and only if p > l/r 

(r22). 

Proof: 

The sequence (Ci ) shown in equation (13) can be simplified to 

1 
ci = 

I+ (r-1) (q/p)' 1 ~ - q ) /  (1-p)1*~ 

In equation (14), let 

(14) 



7 

then equation (14) becomes 

ci = l/[l+(r-l)Qi] . 

Substitution of q=(l-p)/(r-1) into equation (15) gives 

We note that (ci) is an increasing sequence and its limit is one if and only if (Qi) is a decreasing 

sequence converging to zero. For the sequence (Qi) to be monotone we must have (Qi+l/Qi) c 1. 

Since, 

or 
p(r-2) + p2 > 1 - 2p + p2 

(r-2)p> 1-2p 

r P > l  

or 

or 

Hence, we must have 
p >  l/r.  

This proves the necessity. 

Since the boundary reliability p is larger than l/r, let A denote a positive number such that 

p =  l/r+A 

Substituting (l/r + A) into equation (16), we have 



Then 
2 

Qi+l (l-:-A) 
-= 

Qi ( r - 2 + L + * ) ( i + A )  r 

Because r is an integer and larger than or equal to two, 

2 (f + A )  (r - 2 + 1 + A )  - (1 - 7 1 - A )  = r + rA - 1 > 1 
r 

Therefore, (Qi) is a decreasing sequence, and hence (ci) is an increasing sequence. When i = n, 

Qn becomes 

Because the fraction is less than one, Qn approaches zero as n approaches infinity. Therefore, the 

lirmt of (ci) is one when p is larger than l/r. This proves sufficiency and completes the proof 

of Theorem 4.1. 

The following theorem gives sufficient conditions that 

Let the output space have cardinality r and assume all components are independent 
and have the same reliability p. Further assume unique correct outputs. Then the 
following are sufficient conditions for 



9 

(1) p > lh. 
(2) The agreement number m is equal to Floor[(n+r-l)/rl. If Floor[(n+r-l)/r] is 

zero, m is set to two. (We note that if n becomes arbitrarily large then m 
must also). 

(3) When a version fails, the probability of Occurrence of any incorrect output is 
q, where q=(l-p)/(r-1). 

Proof: 

The probability that the j* incorrect item within the output space is generated by i versions is 
M(i ; nj) . From equation (1 l), the marginal probability of M(i ; nj) is 

M ( i ; n j ) - n  - c. q! (1 - qj)*l 

where q. is the probability that the jth incorrect output is generated. When j is not smaller than the 

majority this incorrect output will be voted as correct in N-version programming. But it may or may 
not be voted as the correct answer when j is a number between m and Ceiling[(n+l)/2]. Depending 
on the voting strategy the probability that the jth incorrect item may be chosen as the correct answer 
under m-of-n voting algorithm is no larger than 

1 

i =  m 

In [A&%], the above binomial formula is approximated using the following expression 

where 
1 

m-nqj- - 2 
(19) 

1 
m-nqj+ - 2 

(20) 



10 

and the m r  term o satisfies the inquality 

.13+.1811-2pI 3P tal c + e - 2  
P2 

Let p = (l/r + A), where A is a positive number. 

Because qj = q = (l-p)/(r-I), 

we have qj = q = (l/r)-& where a = A&-1). 

Substituting qj = (l/r)-a into equation (19) it becomes 

1 1 m - n( - a) - 

k1 = 4-j 
Since m 2 n/r, (rn=Floor[(n+r-l)/r]), we have 

1 
a n -  

a, 1 

where 

P =  J- 



11 

Obviously, when n approaches infinity, k' becomes arbitrarily large. Since k' is no larger than kl 
and k2 k2 1, 

and 

When n approaches infinity, p becomes arbitrarily large. The error term o in equation (18) 
approaches zero, and the limit can be written as 

The integral in the above equation is the accumulation function of the standard normal dismbution. 

Since kl and k2 approach infinity the limit is zero. 

In treating the limit of the second part, let 

k2 
(Hj)2 = (1 - k)e - (23) 

Applying L'Hopital's rule and differentiating both numerator and denominator with respect to k 
gives 

ke? 

1 
k2 k2 

e?- +k2e?- 

(Hj< = 

Obviously, the numerator of the above equation approaches zero when k becomes very large. 
Therefore, we have 



12 

The second part of equation (22) consists of two items 

Since the values of both approach zero as k l  and k2 become arbitrarily large, the difference 

between the two approaches zero. This establishes that as n becomes arbitrarily large the value 
computed by equation (1 8) approaches zero. 

Since the occurrence of each incorrect output has the same probability of appearing, the unreliability 

of this m-of-n software system (Fmln) = 1 - Rmln satisfies 

n 

Fmln < (r - 1) nCi qi (1 - q)n-i 
i =  m 

(24) 

Therefore, when n approaches infinity the right side of the inequality is zero. Because Fmin should 

be non-negative, it also approaches zero. The reliability of the system approaches one. This 
completes the proof of Theorem 4.2. 

V. Examples 

In this section we present numerical examples which illustrate the effect on the system reliability of 
different version reliabilities, different output space cardinality, and different voting strategies. 

In Table 5.1 and Figure 5.1 we show results obtained using equation (6) with m=Ceiling[(n+l)/2] 
and 1=2. This is the classical majority voting approach with a binary output space. The boundary 
version reliability in th is  case is l/r = 0.5. The three rows in the middle of Table 5.1 show that the 
version reliability must be larger than the boundary version reliability in order to improve the 
performance of the system. Figure 5.1 shows that with a fmed version reliability larger than 0.5 



13 

system =liability increases when more versions arc added. This, of course, is in agreement with 
findings of Eckhdt  and Lee mk85] who also studied the absolute majority voting process. 

Again using equation (6) if we assume an output space cardinality of r=3 then Table 5.2 and Figure 
5.2 show the effect on system reliability of varying the version reliabilities and the number of 
versions m for the consensus majority voting strategy. The minimal agreement number is 
Floor[(n+r-l)/r] = Floor[(n+2)/3]. The average boundary reliability of the versions is l/r = 1/3. 

Below this reliability value the sequence of correctness factors (Ci} decreases and the system 

reliability deteriorates as more versions are added. All versions are assumed to have the same 
reliability, and all failure states (j=2,3) the same probability (1-p)/(l-r)=(l-p)D of being excited. 

Table 5.3 and Figure 5.3 summarize the effect of the 2-of-n voting strategy for different numbers 
of components. The reliability was computed using equations (3) and (4). The agreement number 
is m=2, and it is assumed that the output space cardinality is infinite. As the number of components 
in the system increases, the reliabilities rapidly decrease, but here this effect is related to the 
number of components involved in the voting rather than the output space cardinality. Of course, 

unless c2 =c3= ...=cn= l this voting strategy can lead to disaster. 

The relationship between r and voting strategies is illustrated in Figure 5.4 for n=15. It is important 
to note that both the absolute majority and the 2-of-n are effectively output space insensitive and can 
lead to ambiguous or nonunique results. For odd n the former behaves as if r=2 since for absolute 
majority voting the agreement number is Ceiling[(n+l)/2] which is equivalent to lemng r=2 in the 
agreement number equation for consensus majority voting, Floor[(n+r- 1)/2]. For even n 
Ceiling[(n+1)/2]>Floor((n+2-1)/2]. Therefore from equations (3) and (4) it follows that given -2 
for even n the reliability of the system using absolute majority voting will be lower than when 
consensus majority is used, while for odd n it will be equal to it. The 2-of-n voting behaves as if 
Pinfinity since for infinite r the consensus majority agreement number reduces to 2 (see Theorem 
4.2). The consensus majority voting is r sensitive and therefore will perform better than absolute 
majority voting for r72 since Floor[(n+r-l)/r]~Ceiling[(n+l)/2]. The absolute majority represents a 
lower limit of the consensus majority voting with -2, while the 2-of-n is an upper limit 

Dependence of the system reliability on the output space cardinality is further illustrated in Figure 
5.5 for consensus majority with n=5 and n=15. Failure state probabilities are the same for all j=2..r 

incorrect outputs. We note that the asymptotic system reliability (r==) corresponds to 2-of-n 
voting approach, while the r=2 point corresponds to the absolute majority voting. Equations (3) to 



14 

(6) with consensus voting and simulation were used to compute the data points shown in Figures 
5.4 and 5.5. 

VI. Simulation 

The relationships given in section IV were derived by assuming that the probabilities of all failure 
states are equally likely. In practice this may not be true. In fact, it is quite possible that one of the 
failure states j, 21j9  is preferentially excited because of very high visibility (under given input 
conditions) of the fault(s)/emrs mapping into it. In the extreme, even in a large output space, this 
leads to the behaviour of the fault-tolerant system as if the output space cardinality is small, i.e. 
highly visible errors force a partitioning on the output space into equivalence classes which 
effectively reduces the output space cardinality. 

Another approximation that was made is the assumption that all the components have the same 
reliability. In practice a range of reliabilities around a mean value, p, would be expected. To study 
the influence of the scatter of individual component reliabilities and of the scatter in the probabilities 
of incorrect outputs, and to check on analytical solutions we used simulation. 

The model we have used is illustrated in Figure 6.1. A single component i is assumed to exhibit a 
probability qi = (1-pi) of failing. We do not separately model different errors contributing to this 

average failure rate, and we assume that all the components exhibit mutual independence with 
respect to the Probability of failure. For each simulated input the component state (failed, 

not-failed) is chosen randomly with the probability, qi, assigned to that component. If the final 

component state is a failure state the actual output state j, one of the (r-1) incorrect outputs, is 
selected randomly with the conditional probability Puli-failed) associated with that output. The 
process is repeated for all n components. The final states of the components are then voted using 
the absolute majority, consensus majority and 2-of-n strategies. 

Simulation of systems described by the equations given in section IV yielded results that coincided 
with the computations obtained using analytic solutions to within the confidence interval of the 
simulation runs. 

The influence of the scatter in component reliabilities is illustrated in Figures 6.2 and 6.3. The 



15 

For example, given that n=5, r4 ,  and pd.623 with op=0.186 we can have ~ 1 4 . 7 5 9 ,  ~ 2 4 . 5 2 2 ,  

~ 3 4 . 3 5 7 ,  ~ 4 4 . 8  19, ~ 5 4 . 6 5 8 .  These component reliability values give system reliability of 

0.735 for absolute majority voting, and 0.851 for consensus majority voting. Clearly, component 
i 4  on its own is more reliabile than the 5-version system under absolute majority vote, and is 
marpally worse than the system under consensus majority voting. As another example consider a 

standard deviation of component reliability, the square mot of ~~~~=Z[@i-p)~/ (n- l ) ] ,  whert p = 

Cpi/n , for i=l..n, is used to measure the dispersion of the component reliability values. In Figure 

6.2 we plot system reliability against the standard deviation of the component reliability using n=5 
with r=4 and ~ 4 . 9 5 .  It was assumed that each incorrect output state j has an equal probability 
(1-p)/(r- 1) of being selected. In Figure 6.3 we have n=5, r=4 and pd.623. Each pair of points 
(majority-absolute) shown in Figures 6.2 and 6.3 was obtained from a separate 100,OOO case 
simulation run. 

From the figures we see that the larger the stan- deviation of the component reliabilities the mOre 
reliable the system. This confirms that from the point of view of component reliabilities the 
equations discussed in secaon IV provide a conservative estimate of the system behaviour since 
they use the same component reliability value for all components and imply a standard deviation of 
zero. Of course, if scatter is large enough then it may happen that one of the components is in fact 
more reliable than the system as a whole under some or all of the discussed voting strategies. 

system composed of more reliable components. Let n=5,r-4, and p=0.95000 with o -0.05333 

which we can produce with ~14.96456,  ~ 2 4 . 9  1313, p3=0.87732, p4=0.99999, p5=0.99500. 

The resulting system reliability under absolute majority voting is 0.99953, and under consensus 
majority voting is 0.99979. Component i=4 is more reliable than the system under either of the 
strategies. Values in first example were computed using 2,000,000 case simulations giving a 95% 
confidence range about obtained system reliabilities of about & O.ooOo3. In the second example we 
used a 10,000,0o0 case simulation giving 95% confidence limits of about t 0.000013 about the 
reported values. 

P- 

Therefore, if all the components are nearly equally reliable, i.e. scatter is small, then using 
equations given in section rV to predict system reliability will provide a conservative estimate of 
this reliability. But if the scatter of the reliabilities is large it means that at least one of the 



16 

components is much more reliable than the average over al l  the components, and it may happen that 
there is at least one component which is more reliable than the N-version system. In such a 
situation, one should either reduce the system by discarding the most unreliable component(s), or 
perhaps employ modifred voting strategies. To illustrate this consider the following. 

Returning to the second example above and discarding component ~34 .87732  and keeping the 

other four, results in system reliability of 0.99635 under absolute majority voting and 0.99937 

under consensus majority voting. By discarding p3 and p2 we obtain 0.99979 for both 

absolute and consensus majority voting. It is only when we reduce the system down to two 
components that the sytem reliability becomes larger than that of component 4. Simulations ran for 
lO,OOO,OOO cases giving 95% confidence limits on system reliability of about O.oooO1. Clearly, 
when working with high reliability components, it is very important to have a well balanced set of 
components of nearly equal reliability in order to achieve best results. A possible adaptive voting 
strategy would be given information about the individual component reliabilities and may, for 
example, attach more importance to answers from sets containing the most reliable component(s). 
This is a subject for future research. 

Figure 6.4 illustrates the effect of variation in the conditional probabilities of selecting incorrect 

output states. If qij=qiPcjli-failed) represents the probability of selecting j* incorrect output for ih 

component, where Puli-failed) is the conditional probability that jth state will be chosen, then 

qi=Zqij=qiZPljii-failed)=l-pi, j=2..r. Let Pi=CP(ili-failed)/(r-l)=l/(r- 1) be the average conditionai 

probability. Then the standard deviation shown in Figure 6.4 is the square root of oP2 = C 

[(P(ili-failed)-Pi)2/(r-2)], where the s u m  is over j = 2..r output states. Simulations were performed 

assuming that for individual component reliabilities P~=P~=. . .=P~=P.  We see that the larger the 

scatter of the conditional failure probabilities, assuming the same p for all components, the mom the 
system behaviour tends towards that associated with the lower r values, i.e. toward that exhibited 
when absolute majority voting is employed. The c w e  for the latter is, of course, level since 
absolute majority voting is r insensitive (effective output space becomes binary, r=2). Simulation 
for each pair of points ran for 100,OOO test cases. 

As an example, let n=5, p=0.95 (all components), and r=4 with equal conditional failure 
probabilities for all incorrect outputs (j=2,3,4; P(jli-failed)=l/3). Then absolute majority voting has 



17 

system reliability of 0.99884 and consensus majority voting has reliability 0.99994. On the other 
hand, if we let r=11 but P(2li-failed)=0.99910 while for j=3..11 PCjli-failed)4.O0010, then 
consensus majority reliability drops to 0.99884 which is qua l  to that obtained by absolute majority 
voting, and is equivalent to an effective reduction of the output space cardinality to ~ 2 .  Example 
values were obtained by simulation, and their standard deviation is O.oooO25. 

The above discussion leads to the conclusion that for conservative estimates we should use r=2 and 
an average p value. However, in practical applications use of consensus majority voting is 
recommended since it provides automatic adaptation of the voting strategy to the component 
reliability and output space characteristics. In the lower limit the reliability provided by consensus 
majority is never worse than the absolute majority voting, while in the upper limit it is equivalent to 
the 2-of-n voting strategy. 

VII. Conclusions 

We have analyzed fault-tolerant software systems using N-Version Progra.mm.ing and different 
voting algorithms assuming output spaces with small cardinality and version failure independence. 
We have proposed an alternative voting strategy which we call consensus majority voting to treat 
cases when there may be agreement among incorrect outputs, a case which can occur with small 
output spaces. Consensus majority voting provides automatic adaptation of the voting strategy to 
varying component reliability and output space characteristics. We show that if r is the cardinality 
of the output space then llr is a lower bound on the average reliability of fault-tolerant system 
versions below which system reliability begins to deteriorate as more versions are added. 

VIII. References 

[AM51 H.H. Aiken et. al, "Tables of the Cumulative Binomial Probability Distribution", Harvard 
University Press, Mass., 1955. 

[Avi77] A. Avizienis and L. Chen, "On the Implementation of N-version Programming for 
Software Fault-Tolerance During Program Execution", Proc. COMPSAC 77,149-155,1977. 

[Avi84] A. Avizienis and P.A. Kelly, "Fault-Tolerance by Design Diversity: Concepts and 
Experiments", Computer, Vol. 17, pp. 67-80, 1984. 

mk85] D.E. Eckhardt, Jr. and L.D. Lee, "A Theoretical Basis for the Analysis of Multiversion 
Software Subject to Coincident Errors", IEEE Trans. Soft. Eng., Vol. SE-11(12), 1511-1517, 
1985. 

[Kni86] J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the assumption of 
Independence in Multiversion Programming IEEE Trans. Soft. Eng., Vol. SE-12(1), 96-109, 



18 

1986. 
[Sco83a] R.K. Scott, "Data Domain Modeling of Fault Tolerant Software Reliability", Ph.D. 

Dissertation, North Carolina State University, Raleigh, North Carolina, 1983 
[Sco83b] R.K. Scott, J.W. Gault, D.F. McAllistcr and J. Wiggs, "Expaimental Validation of Six 

Fault-Tolerant Software Reliability Models", Proc. IEEE 14th Fault-Tolerant Computing 
Symposium, pp. 102-107, 1983 

[Scot441 R.K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Investigating Version 
Dependence in Fault-Tolerant Software", AGARD 361, pp. 21.1-21.10, 1984 

[Sco87] R.K Scott, J. W. Gault and D. F. McAllister, "Fault-Tolerant Reliability Modeling", 
IEEE Trans. Soft. Eng. Vol. SE-13, No. 5, pp. 582-592, 1987 

[Tri82] K.S. Trivedi, "Probability and Statistics with Reliability, Queueing, and Computer 
Science Applications, Prentice-Hall, New Jersey, 1982. 

[Vou85] M.A. Vouk, D.F. McAllister, K.C. Tai, "Identification of correlated failures of 
fault-tolerant software systems", in Proc. COMPSAC 85,437-444, 1985. 

[Vou86] M.A. Vouk, D.F. McAllister, and K.C. Tai, "An Experimental Evaluation of the 
Effectiveness of Random Testing of Fault-tolerant Software", Proc. Workshop on Software 
Testing, Banff, Canada, IEEE CS Press, July 1986. 



19 

Table 3.1 Correctness factors as a function of version reliability under the assumption of version 
failure independence for 15 functionally equivalent program versions of equal reliability, p. 
The output space cardinality is 1=2, the boundary reliability is l/r = 1/2 = 0.5. 

i m . 4 9  p0.50 w . 5 1  pO.80 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0.6083 
0589 1 
0.56% 
0.5498 
0.5300 
0.5 100 
0.4900 
0.4700 
0.4502 
0.4304 
0.4110 
0.3917 
0.3728 
03543 

0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 

0.3917 O.ooO0 
0.4110 O.ooO0 
0.4304 O.OOO1 
0.4502 0.0010 
0.4700 0.1154 
0.4900 0.2000 
0.5100 0.8000 
0.5300 0.8846 
0.5498 0.9990 
0.5696 0.9999 
0.5891 1.oooO 
0.6083 1.oooO 
0.6272 1.oooO 
0.6457 1.oooO 



20 

system 
rel iabil i ty 

Figure 5.1 System reliability vs. component reliability for absolute majority voting strategy. 
Number of components used for voting is 'W', the agreement number is m, r-2 , and boundary 
version reliability is lb0.5.  

1 .o 
0.9 1 
0.8 - -  
0.7 - -  
0.6 - -  
0.5 - -  
0.4 .- 
0.3 - -  

system 
rel iabil i ty 

0.2 t 
0.1 + 

m=Floor h + 2 )  /3] 

0.0 0.1 0.2 0.3 0.4 0.S 0.6 0.7 0.8 0.9 1 .O 
component rel iabil i ty 

Figure 5.2 System reliability vs. component reliability for the consensus majority voting 
strategy. The number of voting components is "n", the agreement number is m, r-3, and the 
boundary version reliability is l/r = 0.3333. 



21 

Table 5.1 The reliability of the N-version programming system using majority voting ( ~ 2 ) .  
Reliability of the system is p, the number of components participating in a vote is n. 

0.0500 0.00725 0.00039 0.00000 0.00000 
0.1000 0.02800 0.00273 0.00031 0.00000 
0.1500 0.06075 0.01210 0.00361 0.00000 
0.2000 0.104oO 0.03334 0.00424 O.ooOo3 
0.2500 0.15625 0.07056 0.01730 0.00070 
0.3000 0.21600 0.12604 0.05001 0.00642 
0.3500 0.25175 0.19985 0.11323 0.03363 
0.4000 0.35200 0.28979 0.21310 0.11431 
0.4500 0.42525 0.39171 0.34650 0.27514 

0.4900 O . M O 0  0.47813 0.46861 0.45257 
05000 0 5 W  05oooO OJoooO 0 5 W  
05100 05l.500 052187 053139 054743 

0.5500 0.57475 0.60829 0.65350 0.72486 
0.6o00 0.64800 0.71021 0.78690 0.88569 
0.6500 0.71825 0.80015 0.88677 0.96637 
0.7000 0.78400 0.873% 0.94999 0.99358 
0.7500 0.84375 0.92944 0.89270 0.99930 
0.8000 0.89600 0.96667 0.99579 0.99997 
0.8500 0.93925 0.98790 0.99639 1.00000 
0.9OoO 0.97200 0.99727 0.99969 1.00000 
0.9500 0.99275 0.99961 1.00000 1.00000 
0.9900 0.99990 1.00000 1.00000 1.00000 
0.9990 1.00000 1.00000 1.00000 1.00000 



22 

Table 5.2 The reliability of the N-version programming system using consensus majority voting 
(-3). Reliability is p, the number of components participating in a vote is n. 

p n=3 n=7 n=ll n=15 

0.0500 0.00247 0.00131 O.ooo49 0.00008 
0.1000 0.03590 0.01708 0.00646 0.00243 
0.1500 0.07843 0.05064 0.02888 0.01584 
O m  0.13472 0.10502 0.07584 0.05420 
02500 0.20239 0.17870 0.15164 0.12884 
0.3000 0.27884 0.26785 0.25339 0.24154 

03300 032779 0.32662 032511 029537 
03330 033266 0.33258 033251 033237 
03333 033333 0.33333 033333 033333 
03340 033468 0.33484 033499 033527 
03400 034448 0.34683 034994 035280 

0.3500 0.36727 0.37141 0.37519 0.38248 
0.4000 0.44704 0.47123 0.50430 0.53410 
0.4500 0.53321 0.57412 0.62970 0.67710 
0.5000 0.61719 0.67090 0.74145 0.79646 
0.5500 0.69650 0.75753 0.83292 0.88482 
0.6OOO 0.768% 0.83117 0.90141 0.94252 
0.6500 0.83276 0.89030 0.94790 0.97534 
0.7000 0.88653 0.93474 0.97604 0.99125 
0.7500 0.92944 0.96549 0.99804 0.99758 
0.8000 0.96128 0.98458 0.99730 0.99953 
0.8500 0.98253 0.99470 0.99947 0.99995 
0.90oO 0.99448 0.99887 0.99995 0.99999 
0.9500 0.999% 0.99992 1.00000 1.00000 
0.9900 0.99999 1.00000 1.00000 1.00000 
0.9990 1.00000 1.00000 1.00000 1.00000 



23 

Table 5.3 The reliability of the N-version programming system using 2-of-n voting strategy 
(I=-). System reliability is p, the number of components participating in a vote is n. 

p n=3 n=7 n=ll ntl5 

0.0500 0.00725 0.0019 O.oooO1 0.00000 
0.1000 0.02800 0.14969 0.30264 0.450% 
0.1500 0.06075 0.28342 0.50781 0.68141 
0.2000 0.10400 0.42328 0.67788 0.83287 
0.2500 0.15625 0.55505 0.80290 0.91982 
0.3000 0.21600 0.60758 0.88701 0.96473 
0.3500 0.28175 0.76620 0.93492 0.98582 
0.4000 0.35200 0.84137 0.96977 0.99783 
0.4500 0.42525 0.89758 0.98601 0.99831 
0.5000 0.5oooO 0.93750 0.99414 0.99951 
0.5500 0.57475 0.96429 0.99779 0.99989 
0.6OoO 0.64800 0.98116 0.99927 0.99997 
0.6500 0.71825 0.99099 0.99980 1.00000 
0.7000 0.78400 0.9%21 0.99995 1.00000 
0.7500 0.84375 0.99865 0.99999 1.00000 
0.8000 0.89600 0.99963 1.00000 1.00000 
0.8500 0.93925 0.99993 1.00000 1.00000 
0.9oOo 0.97200 0.99999 1.00000 1.00000 
0.9500 0.99275 1.00000 1.00000 1.00000 
0.9900 0.99970 l.o00oo 1.00000 1.00000 
0.9990 1.00000 l.m 1.00000 1.00000 



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Component rellabllity 

Figure 5.3 System reliability vs. component reliability assuming infinite cardinality of the output 
space under 2-of-n voting strategy. 

S 
re1 

yr tem 
labl l l t  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Component rellablilty 

Figure 5.4 System reliability vs. component reliability for n=15 in the range r=2 to I=-, under 
appropriate voting strategies. Probability of each J=2..r failure state is (1-p)/(r- 1). Simulation was 
used to compute the I= 10 curve. 



25 

1.0 7 ,@4M.4-- p=0.80+ 
0.9 .' 
0.8 

Consensus Majority 
voting System 0.5 

rel iabi l i ty  

Os4 t ps0.20 

0.1 4 7' p=0.05 
a 

0.0 
1 10 100 1000 10000 

Output space cardlnality (r) 

Figure 5.5a System reliability vs. Output space cardinality for n=5 using consensus majority 
voting. All components have the same reliability, p. Probability of each j=2..r failure state is 
(1-p)/(r-I). Majority of the data points were computed by simulation. 

0.9 + $4- 

15 components 

Consensus Majority 

rel iabi l i ty  
0.4 

0.3 voting 

1 10 100 1000 10000 
Output space cardlnallty (r) 

Figure 5.5b System reliability vs. output space cardinality for n=15 using consensus majority 
voting. All components have the same reliability, p. Pmbability of each j=2..r failure state is 
(1-p)/(r-1). Majority of the data points were computed by simulation. 



26 

ith component 

Success Failure states I 
0 \ 

b)  

Fail 
U o t e r s  0 

Ab solute M 8 j o r i  t y 
Consensus Majority 

2-of-n 

' : /  0'. om p on e n t  s 

Final system 
s t a t e  

Figure 6.1 Schematic representation of the simulation states for a single component (a), and the 
voting process (b). Individual component reliability is represented by pi, and the conditional 
probability of failing with state j = 2 .. r by Poli-failed). 



27 

1 .oooo 

0.9998 

0.9996 

0.9994 
re l lab l l l ty  

0.9992 

0.9990 

0.9988 

Simulation 

0 
Consensus majority / 

Absolute majority 

5 componenta 
Average component 

reliability = =0.;5 1 
Cardlnallty 

I 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 
Standard devlatlon of the component 

re1 l a b  Ii I t  y 

‘Figure 6.2 System reliability vs. the standard deviation of the component reliability. Probability 
of each failure state is (1-p)/(r-1) = 0.05/3. 



20 

5 components 
Average component re l l rb l l l ty  = 0.623 

Identlcai condltlonal fallure probabl l l ty  
0.95 Cardlnri l ty = 4 - 
0.90 -. 

Consensus majority 
A 

I / Iation 

0.75 /' / A Absolute majority 
4 d A  

0.70 
0.0 0.1 0.2 0.3 0.4 

Standard deviation of the component 
r e i  l a  b l  II t y 

Figure 6.3 System reliability vs. the standard deviation of the component reliability. Probability 
of each failure state is (1-p)/(r- 1) = 0.377/3. 

0.95 T 
Simulation 

Component reliabil l ty = 0.623 
Cardinality = 

Average conditional fallure probabil i ty = 113 

0.85 

Consensus majority 
System 

r e l l a  b ii I t  y 

0.70 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Standard deviatlon of the conditional 
f a l  lure pro ba b l  I I t y 

Figure 6.4 System reliability vs. the standard deviation of the conditional failure state 
probability. All components have identical reliability p = 0.623. 





COMPUTER STUDIES 

TECHNICAL REPORT 

David E.  Eckhard t  
A1 per Cagl ayan 

John P .  J .  Kelly 

TR -87 -08 

North Carolina State University 
Raleigh, N. C. 27650 



EFFECTIVENESS OF BACK-TO-BACK TESTING* 

Mladen A. Vouk, David F. McAllister 
North Carolina State University 

Department of Computer Science, Box 8206, Raleigh, NC 27695-8206 

David E. Eckhardt 
National Aeronautics and Space Administration 

* Langley Research Center, Hampton, Va 23665 

Alper Caglayan 
Charles River Analytics 

55 Wheeler St., Cambridge, Ma 02138 

John P. J. Kelly 
University of California, Santa Barbara 

Department of Electrical and Computer Engineering, Santa Barbara, Ca 93,06 

Key Words : Software fault-tolerance, software testing, back-to-back testing, 
correlated errors, software reliability 

Abstract 

Three models of back-to-back testing process are described. Two models treat the case 
where there is no inte-omgonent failure dependence. The third model describes the 
more realistic case where there is correlation among the failure probabilities of the 
functionally equivalent components. The theory indicates that back-tu-back testing can, 
under right conditions, provide a considerable gain in software reliability. The models 
are used to analyse the data obtained in a fault-tolerant software experiment. It is shown 
that the expected gain is indeed achieved, and exceeded, provided the inter-component 
failure dependence is sufficiently small. HoweverI even with relatively high correlation 
the use of several functionally equivalent components coupled with the back-to-back 
testing may provide a considerable reliability gain. Implications of this finding are that 
the rnultivenion software development is a feasible and cost-effective approach to 
providing highly reliabile software components intended for fault-tolerant software 
systems, on condition that special attention is directed a t  early detection and elimination 
of correlated faults. 

(*) This research was supoorted in part by NASA grants NAG-1-667, and NAG-1-512. 
and contract NAS-1-17705. 



1. Introduction 

Fault-tolerance is or wil l  become part of many critical software and hardware 

systems [e.g., Mar82, Mad84, Tro85, Bis861. There are two common methods for 

achieving software fault-tolerance. These are the N-version programming approach and 

the recovery-block approach [Ran?% Avi841. 
a 

Although existing fault-tolerant software (FTS) techniques can achieve an 

improvement in reliability over non-fault-tolerant software, experiments show that 

failure dependence among FTS system components may not be negligible in the context 

of current software development and testing techniques [Nag% Sco84, Nag84, Vou85, 

Wig84, Kni86, Kel861. Correlated coincidental component failures may be disastrous in 

current FTS approaches and can seriously undermine any reliability gains offered by the 

fault-tolerance mechanisms (e.g. Sco83a, Sco84, Avi84, EckBS, Vou86aI. Hence it is 

important to detect and eliminate them as early as possible in a FTS life-cycle. 

Throughout this paper we  shall use the terms "component(s)", "version(s)", 

"functionally equivalent software components", and "software components" 

interchangeably. The terms "coincident", "correlated" and "dependent" failures (faults) 

have the following meaning. When two or more functionally equivalent software 

components fail on the - same input case we say that a coincident failure has occurred, 

and k failing components give a level-k coincident failure. The fault(s) causing a Level-k 

failure we shall call level-k fault(s). When two or more versions give the same incorrect 

response, to a given tolerance, w e  say that an identical-and-wrong (IAW) answer was 

obtained. If the measured probability of the coincident failures is significantly different 

from what  would be expected by random chance on the basis of the measured failure 

probabilities of the participating components [e.& Eck85, Kni86, Vou851, then we  say 

that the observed coincident failures are correlated or deoendent, Le. if Pr denotes 

probability, then 



2 

pFf version(i) fails I venion(j) fails 1 # Pr { version(i) fails I. 

If a fault, or a fault combination, results in a IAW answer from k components we say that 

the falut(s) has (have) "spBn" of size k. The fault span is important because with the 

probability of excitation of the fault (fault intensity or visibility) it determines the level 

of the inter-component failure correlation for that fault. 

The back-to-back testing technique discussed here involves pairwise comparison of 

all functionally equivalent components. Whenever a difference is observed among 

responses, the problem is thoroughly investigated and appropriate action is taken. If all 

answers are identical to within a specified tolerance then a "no detected failure" event is 

said to occur. We say that back-to-back testing fails when all the components fail with 

(within tolerance) IA W answers. Our e-veriments indicate that these corrrelated faults 

occur in practice but can be prevented or reduced. 

In section 2 we present three models of the back-to-back testing process. In 

section 3 we use the models to analyse and discuss the e.uperirnenta1 information 

concerning the effectiveness of the back-to-back testing and the multiversion 

development approach. 

2. Faiiute Models 

Our goal is to model the probability that k versions obtain IAW answem and 

compare it with experimental findings. W e  will  present three models, two of which 

assume that the versions fail independently and the third attempts to capture the 

correlation between versions. We assume that m functionally equivalent software 

components of versions were developed by independent programming teams from 

equivalent specifications. We will select a subset of size k from these m versions which 

we will call a k-tuple. 

Back-to-back testing of k zomponents fails to  signal a potential error :vhen ii! 



3 ' -  

the Components agree, to a given tolerance, on a value which is a wrong answer. This 

results in an "undetected" failure. Of course, if k=l i.e. single component, then every test 

case (run time errors resulting in operating system intervention excepted) is a potential 

"undetected" failure in the absence of an oracle or tfgoldenl' program. In the following 

text the term "agreement" means equality. between two responses (answers) within a 

tolerance TOL. I t  is also assumed that a "golden" or oracle answer is available. 

Consider a k-tuple of components. The following two Events are independent of 

the golden program (see examples in Figure 1). 

* If all k components agree on an answer, a "COLLECTIVE AGREEMENT" event 

occups. 

If there is any disagreement among the components (components being compared 

pairwise with each other, C(k,2) comparisons in all), a "COLLECTIVE WARNING" 

event occurs. 

The following event depends on the golden answer: 

* If all k components agree with the "golden" answer a "SUCCESS" event occurs. 

The following three events are called FAILURE events and they also depend on the 

golden answer: 

If one or more of the component answers disagree with the golden answer a 

"ONEPLUS FAILURE" event occurs. This is a pessimistic (conservative) view of the 

failure recognition process, since one or more failures is considered to fail the k- 

tuple. 

The following events are subevents of the ONEPLUS FAILURE event: 

If the majority of the components disagree with the golden answer then we say that a 

"MAJORITY FAILURE" event h a s  occurred. The majority of k components is defined 

as r(k+lV 2 1  . It is possible to define other intermediate states such as the majority 



4 

of components agreeing with the golden answer, two-or-more disagreeing etc. 

If all the components disagree with the golden answer then we  say that a n  "ALL 

FAILURE" event  takes place. 

- 

Other  rneaSuFe of "distance", such as t h e  difference between the mean value of the  

component answers and the golden answer, may coalesce the ONEPLUS through ALL 

FAILURE events into a single event. 

Combinations of the above "eiementary" events produce the following mutually 

exclusive and collectively exhaustive back-to-back testing events (see Figure 1): 

* If a SUCCESS occurs together with a COLLECTIVE AGREEMENT then a n  "OK?* 

event occurs. 

* If a SUCCESS occurs together with a COLLECTIVE WARNING then a "FALSE 

FLAG" event occurs. The back-to-back testing signals an  error when one is not  

present. We note that la-bl - < TOL and 1b-d 5 TOL does not  imply tha t  la-cl 5 TOL. 

Hence, FALSE FLAG events a r e  not inconsistent. 

If a FAILURE occurs together with a COLLECTIVE WARNING w e  say that a "FLAG" 

event has occurred. The back-to-back testing correctly de t ec t ed  a potential fa i lure  

(fault). 

If FAILURE occurs simultaneously with a COLLECTIVE AGREEMENT then w e  s a y  

that a NO - FLAG event occurs. This is the  mos t  significant back-to-back testing 

event. A potential  failure exists (the failure is fully confirmed if ALL FAILURE has 

occured) but was not detected by back-to-back testing. 

* 

* 

2.1 IAW Models 

Formally, the probability that a given subset of k versions or a k-tuple 

obtains a IAW answer can be  writ ten as a conditional probability as follows. Let X 

denote the  event "k versions obtain identical answers" (COLLECTIVE AGREEMENT). 



. .  
, 

5 

c 
D 

Y 
0 

. .  

a a 
A 
LL w cn 

A 
1L 
a 

I- *: 
w 
2 
2 n 

(0 

> 
L 

rl + 

I 
Y 

I 
0 

n 
0 

i 
LL 

oz 



6 

a n  B the event  "k versions fai l  simultaneously" (ALL FAILURE), and A&B their 

intersection (NO-FLAG), then  

P(AdcB) = P(AIB)P(B) (1) 

Let  Pi represent the probability that component i, 1 C - -  i < m, fails on a given 

input, and let 'p be the mean fa i lure  probability per tes t  case per  component'  for the  

set of m components. Then 

where the sum is from i=l  to m, 

I t  is possible to construct C(m,k) sets of k-tuples f rom a pool of rn 

components, where C(m,k) is the number of combinations of m objects taken  k at a 

time. If the failure probabilities are independent then the probability of an ALL 

FAILURE for the j t h  k-tuple is as follows: 

Pj(k) = PIP2 - 0 -  Pk 

We will use P(k) t o  denote t h e  average  of the Pj(k)'S over all C(m,k) subsets: 

where sum is from j=1 to C(m,k). W e  note that i t  can be shown that (sk 2 P(k). We 

also note  that if & denotes the average  failure probability of a single k-tuple, then 

the average of this value over C(m,k) k-tuples is E- In the following text, unless 

stated otherwise, all the quant i t ies  are averaged over C(m,k) k-tuples. 

From the definition of the NO FLAG event  it follows that the probabili ty of 

this event  is less than or equal to the probability of a FAILURE event,  L e t  PI(k) be 

the  probability of an  IAW answer  from all k components of a k-tuple (ALL FAILURE 

event). Then 

PI(k) = F k ) P r ( k  versions fail simultaneousiv) 



. .  

7 

where r ( k )  is the conditional probability of an identical level-k answer (given an 

ALL FAILURE event occurred). This quantit y has , in general, two components. One 

is due to the cardinality of the output space, and the second component is the failure 

(fault) dependence. The probability of IAW answers increases as the cardinality of 

the output spacesdecreases. For low cardinality (finite) output spaces the probability 

of a coincident failure of two or more components resulting in an IAW answer may be 

quite high without any correlation being present. For example, if output space is 

binary, then ail programs which are incorrect wil l  produce the same wrong answer, 

Le. the probability of IAW answers is 1 for failing versions. 

In our first model we approximate the probability of event B in equation (1) 

by the relationship Pr(k versions fail simultaneously) = (PIk . Therefore in Model I 

the probability that back-to-back testing fails to detect an error (NO-FLAG event) is 

where rs(k) represents the component of f(k) associated with the output space 

cardinality effect. Since independence is assumed the failure (fault) correlation is 

zero. The space cardinality component rS(k) is expected to be a decreasing function 

of the size of the error output space, x, and the number, k, of the interacting 

Components (Sun851. Hence, a shape similar to l/x would be expected. In practice 

)(s(k) will also reflect the sampling strategy over the input/output domains, and will  

be a composite function over a l l  the variables involved in determining the 

correctness of an answer. See (Sun851 for a more detailed discussion of this 

phenomenon. 

k 

Equations (1). (3) and (4) yield Model I1 for the failure probability of the 

back-to-back testing approach: 



8 

When pi's are equal to, say p, for all i, then the  two models become 

equivalent, Le. PI(k) =br,(k) pk . The difference in the es t imates  offered by the two 

models depends on t h e  var iance of g. I t  can b e  shown tha t  Model I will always of fe r  

a more conservative e s t i m a t e  of the back-to-back failure probability than Model 11. 

Since r & k )  < - 1, P(k) and (6)k provide upper bounds or worst-case values for  PI(k) . 

As an  illustration of the detrimental  influence of inteF-component failure 

correlation consider the following. Let P,(k) denote  the average probability of an 

ALL FAILURE event  in a n  environment where inter-component failure (fault)  

correiation is present. Then Model I11 is given by: 

The components of r ( k )  are 

[(k) = rS(k)+ Il,(k)-P(s&c) (9) 

denotes  the influence of the fault correlation, and P(s&c) the  probability 
where r 
of the intersection of the space  and correlation events. 

The conditional probability c(k) is a function of the number of components 

containing the fault(s) resuit ing in an IAW answer (faul t  span), the visibility (or 

excitation probability under  given sampling conditions, [Ram82]) of the fault(s), and 

of the number of such f au l t s  in the set under consideration. 

r 

L e t  C(k)=&This is  o f t en  a reasonable assumption. Also assume t h a t  all the 

failures are caused by t h e  s a m e  fault, or fau l t  combination, and that all failures 

result in IAW answers f rom s components, Le. the fault span is s. Then, given an 

input which results in failure,  and provided k - c s, we can  construct  C(s,k) k-tuples 

where al l  components fa i l  with a n  IAW answer, and C(m,k) k-tuples in all. Therefore  

the probability of randomly choosing a k-tuple exhibiting level-k IXW is 

C(s,k)/C(m,k). If we assume tha t  :he ?robability of failure on input is Ti on :he 



9 -  

average, then the probability that back-to-back testing fails to signal a level-k 

failure is 

PI(k) = EC(s,k)/C(m,k)l (10) 

When s<kj C(s,k) is defined to be zero. Note that if failures are completely 

uncorrelated fault span is one (s=l), and then PI(k>1)=0 

3. Experimental Results 

In the summer 1985 a FTS experiment took place sponsored by NASA 

Langley Research Center. The participants were the authom, the Research Triangle 

Institute (NC), the University of Illinois (Urbana-Champagne, Il), and the University 

of Virginia (Charlottesville, Va). h detailed description of the experiment is given in 

[KelSGI. The programmers worked in two-person teams formed by random selection. 

All the programmers worked from the same specification. The programming teams 

were responsible for the software design, the implementation and the testing phases 

of the lifecycle. The experimenters provided acceptance testing of the product. 

The experiment resulted in 20 functionally equivalent programs for solving a 

problem in inertial navigation. The problem specification w a s  new, written for the 

experiment, and was not debugged via a 'pilot" version of the code prior to the 

production of the redundant components. This resulted in a very heavy query traffic 

between the experimenters and the programming teams during the component design 

phase and in the initial stages of the implementation. 

The acceptance testing w a s  a low-expectation process, i.e. only a few 

critical variables were checked, and only 50 random test cases were used. 

Consequently the functional and structural test coverage of the products was low. 

The reliability of the components based on the acceptance testing was about 0.94. 



10 

The validation testing using much stricter criteria, a range of tolerances for 

comparing r e d  number values test data sets consisting of random and extrema1 and 

special value test cases, and providing fu l l  functional and linear-block coverage, 

detected a number of faults of varying prevalence and seriousness. Some of the 

faults were found to be highly correlated. The reliability of the components w a s  

found to be a strong function of the tolerance used for comparisons. Adjudication of 

the answer correctness was performed using a "golden" or oracle program developed 

at NCSU. Software development and testing w a s  done on VAX 11/750 and 780 

hardware running UNIX 4.2BSDT and MicroVAX I1 hardware running Ultrix 1.2. 

f 

In order to study the influence of component reliability and intercomponent 

failure dependence on the performance of back-to-back testing we have formed 

subsets of components. The subsets had different average component failure 

probability (p'), and different inter-component correlation characteristics. 

Components for the subsets were selected on the basis of their behaviour during 

different stages of the validation testing. The four subsets which are discussed in this 

paper are coded 6(2.1), 4(2.1), g(2.1) and 13C3.1). The first number identifies the 

number of versions (rn) and the second the problem specification update number to 

which the test data and the goiden code used for testing conformed. 

3.2 Experimental Measurements 

The effectiveness of back-to-back testing was investigated using random 

test cases. The emor detecting power, and the structural and functional coverage 

provided by the random sets saturated very rapidly. Measured values (e.g. r ( k ) )  

stabilized by the time about 100 cases were run (not an unexpected result, 

[Vou86a,b]), and hence we used only 200 random test cases. In the back-to-back 

event space this, of course, expands to 200*C(m,k) event samples and gives 

15 

acceptable 95% confidence Sounds on '.he back-to-back testinq parameters. 



3 .  

I I 

To measure the "reliability gain" (or unreliabilitg reduction factor), G(k), 

offered by back-to-back testing process of k components, as opposed to the 

development of a single component, we shall use the ratio of the probability of an 

"undetectedff failure in an average single component to the probability of an 

"undetected" failure in an average k-tuple after back-to-back testing: 

Experimentally, single component "undetected" failures were recorded by 

running functionally equivalent components against a "golden" or oracle program to 

estimate component failure probabilities. An average value was  then computed for 

the pool of available (operational) components. 

The "undetected" multicomponent failures probabilities were computed from 

pairwise comparisons of responses of all components. The results of the comparisons 

for each test case were recorded in a (k+l )  by k response matrix. The zeroth row of 

the response matrix ( i=O)  contains information on the comparison of the components 

with the golden code. The remaining rows cary information about the mutual 

comparisons of the components. For example, if the comparison of components i and 

j detected a difference for a given test case then the entries (i,j) and U,i) were given 

value 1, otherwise the value w a s  zero. Unless stated otherwise, a comparison 

involved eleven variables, or 52 individual values if array elements are counted 

separately. A difference w a s  signalled if even one of these 52 values differed from 

the golden value. The results shown in this paper were obtained with TOL=0.0001 

absolute for real numbers, and TOL=O for integers. The response matrices were used 

to compute the usual multiple component failure profiles [Vou85,86aI, intensity 

profiles [EcksSI, and counts of the back-to-back events (see section 2). 

Let a hat," , denote experimentally obtained estimates. If ^pi cenotes an 



12 

estimate of the failure probability of component i (relative to the gold program), 

then 5 WIW computed by substitution of the $i values into equation (2). Individual 

Pj(k)'S were similarly computed by substitution in equation (31, and 6(k) was then 

computed using equation (4). The estimate Pc(k) was computed from the count of all 

level-k FAILURE events. The estimate P^i(k) was calculated from the ratio 

A 

A 

A 

[NO-FLAG-count/200*C(m,k)], where the count w a s  over all 200 test cases and over 

all the k-out-of-m possible k-tuples. The parameter was estimated from the ratio 

[NO-FLAGcount/FA.fLURE-count]. The analysis was performed for all three 
Y 

FAILURE event categories defined in section 2, Le. ONEPLUS, MAJORITY and ALL. 

The results are summarized in Table 1. 

To illustrate the relative size of the inter-cornponent correlation among the 

sets, and order them by correlation level, we compute a function L(k) defined by: 

where L(k) may be regarded as the amplification factor of the worst-case 

uncorrelated back-to-back testing failure probability required to achieve the 

observed PI(k) . The value of L(k) is always positive and may be 1 q e r  than 1. Since 

the output space cardinality is the same for all subsets any differences in the L(k)'s 

stem from the inter-component failure dependence and therefore can be  used to 

estimate its relative magnitude. 

A 

3.3 The Gain 

The experimental gain estimates (using ONEPLUS FAILURE events) are 

shown in Figure 2. Note that the ordinate uses logarithmic scale. The notation used 

in the legend of this and other figures h a s  the following meaning. The first two 

letters describe the function that is being plotted. If the first letter is T then the 

curve is the  resuit of theoretical computations, if it is E the data was obtained 



Table 1. 

Experimental Results 

- 
6(2.1) p = 0.379 using ONEPLUS FAILURE events i i 

i Set: 
i ! 2  2.80 0.136 0.615 0.126 0.221 3000 I 

i 3  9.85 0.0385 0.769 0.0351 0.0501 4000 
1 4  51.7 7.33e-3 0.873 7.85e-3 8.40e-3 3000 i 
! 6  i nf 0 1.0 2.01 e-4 0 200 
1 5  455.0 8.3 3e-4 0.947 1.38e-3 8.80e-4 1200 ! 

- 
i Set: 6(2.1) p = 0.379 using MAJORITY FAILURE events 

~~~ ~~~ ~ 

2 12.5 0.0303 0.134 0.126 0.21 1 3000 
, 3  24.1 0.0156 0.306 0.0351 0.0515 4000 
% 4  284.3 1.33e-3 0.156 7.85e-3 8.5 5 e-3 3000 
I 5  inf 0 0.270 1.38e-3 0 1200 , 
1 6  inf 0 0.160 2.02 e-4 0 ZOO i 

- 1 I- 
i Set: 6(2.1) p = 0.379 using ALL FAILURE events 

------ -- ---.- -. 
2 12.5 0.0303 0.114 0.126 0.21 1 3000 
3 137.8 2.7 5e-3 0.0625 0.0351 0.0440 4000 

I 4 1137.1 3.33e-4 0.0313 7.85e-3 0.0106 3000 
' 5  inf 0 0.0192 1.38e-3 0 1200 

6 i nf 0 0.0150 2.02e-4 0 200 

Set: 4(2.1) @ = 0.185 using ONEPLUS FAILURE events 
-. 

2 1.12 0.166 0.302 0.0276 0.550 1200 
3 1.66 0.111 0.376 3.31e-3 0.296 800 

I j 4  3.08 0.060 0.420 3.44e-4 0.143 200 , 
I Set: 4(2.1) 'p = 0.185 using MAJORITY FAILURE events 1 I 

1 

I 2  4.19 0.0442 0.0683 0.0276 0.646 1200 

I 4  18.5 0.010 0.060 3.44e-4 0.167 200 
3 3.61 0.0513 0.153 3.31e-3 0.336 800 

1 Set: 4(2.1) = 0.185 using ALL FAILURE events 

2 4.19 0.0442 0.0683 0.0276 0.646 1200 
3 29.6 6.2 5e-3 0.0262 3.31e-3 0.238 800 1 
4 inf 0 0.01 50 3.44e-4 0 2 00 



Table 1. (continued) 

k & k )  k k )  k k )  P^(k) i ( k )  aanplej 
s i z e  -- 

S e t :  g ( 2 . 1 )  p = 0.366 u s i n g  ONEPLUS FAILURE events 
-- 

2 
3 
4 
5 
6 
7 
8 
9 

S e t :  

-- -- .- -- - ----- ----- --- - -~ -.__ 

2.1 1 0.174 0.562 0.126 0.309 7200 
4.40 0.0832 0.683 0.0406 0.122 16800 
9.74 0.0376 0.767 0.0122 0.0490 25200 
23.4 0.0157 0.830 3.41e-3 0.0189 25200 
60.9 6.01e-3 0.882 8.71e-4 6.82e-3 16800 
175.7 2.08e-3 0.926 2.00e-4 2.25e-3 7200 
658.6 5.56e-4 0.961 4.0 5e-5 5.76e-4 1800 
i nf 0 7.25e-6 0 1.000 

g ( 2 . 1 )  'p = 0.366 u s i n g  ALL FAILURE events 

200 --- ---__ -. -- - -- 

2 6.72 0.054 
3 26.6 0.0137 
4 93.2 3.93e-3 
5 279.5 1.3le-3 
6 768.6 4.76e-4 
7 2635.2 1.39e-4 
8 i nf 0 

inf 0 9 

S e t :  13(3.1) = 0 .443  

2 2.45 0.181 
3 6.53 0.0656 
4 18.8 0.0232 
5 56.0 7.76e-3 
6 187.1 2.32e-3 
7 739.1 5.86e-4 
8 3732.3 1.17e-4 
9 31102 1.40e-5 
10 inf 0 
11 inf 0 
12 inf 0 
13 inf 0 

__ - - - . - .- - 

- 

0.169 
0.0936 
0.0556 
0.0317 
0.0226 
0.0155 
0.0117 
0.0100 

u s i n g  

0.631 
0.731 
0.789 
0.821 
0.839 
0.848 
0.853 
0.854 
0.855 

- 

_L_______ 

0.126 
0.0406 
0.0122 
3.3le-3 
8.7 1 e-4 
2.0 0 e-4 
4.05e-5 
7.25e-6 

0.322 
0.147 
0.0706 
0.0377 
0.0211 
8.93e-3 
0 
0 

---______ - 
7200 
16800 
25200 
25200 
16800 
7200 
1800 j 
200 

ONEPLUS FAILURE events 

0.189 
0.0782 
0.03 11 
0.0119 
4.38e-3 
1.5 5 e-3 
5.27e-4 
1.73e-4 
5.46e-5 
1.67e-5 
4.94e-6 
1.42e-6 

0.286 
0.0697 
0.0294 
9.46e-3 
2.77e-3 
6.94e-4 
1.37e-4 
1.64e-5 
0 
0 
0 
0 

15600 
57200 
143000 
257400 
343200 
343200 
275400 
143000 
57200 
15600 
2600 
200 

Set: 13(3.1) p = 0.443 u s i n g  ALL FAILURE events 

2 4.82 0.0920 0.254 0.189 0.362 15600 
3 22.2 0.0199 0.167 0.0782 0.119 57200 
4 86.3 5.13e-3 0.123 0.031 1 0.0418 143000 

' 5  304.1 1.46e-3 0.0976 0.0119 0.0149 257400 
1 6  1187.8 3.73e-4 0.0810 4.3 8e-3 4.61e-3 343200 
I 7  6081.5 7.28e-5 0.0686 1.55e-3 1.06e-3 343200 

8 57014 7.77e-6 0.0587 5.2 7e-4 1.32e-4 275400 
1.73e-1 0 14300 

11 57200 
9 i nf 0 0.0501 
10  inf 0 'I. 0 4 "3 3.46e-J 
11 inf 0 0.0337 1.67e-5 0 15600 
12 i nf 0 0.0273 4.94e-6 0 2600 

- --- - - - . - . - ---. -- ___ - 

i inf 0 0.0200 1.42e-6 0 
-------.-.-----------.--.---I__ 

__-- - 
1 13 



experimentally. The 

L(k), c = r ( k ) .  The 

versions involved in 

14 

second letter has the following meanings: G = G(k) or gain, L = 

number following the first two le t ten  denotes the number of 

the comparisons (m), and is used to identify the component 

subset used. If the data are experimental this number may be followed by another 

letter. Letter A denotes that ALL FAILURE events were used to derive the plotted 

values, letter M that the MAJORITY FAILURE events were used, and if there is no 

letter ONEPLUS events were used. For theoretical curves the number of components 

is followed, in parentheses, by a roman numeral (1, 11 or 111) identifying the 

theoretical model bound used to compute the values. In the case of Model 111 the 

identifier is followed by the span value used in computations. 

I t  is obvious that even in the worst observed case (subset 4(2.1)) the 

multiversion development coupled wi th  back-to-back testing offers some gain in 

reliability over the single component development approach. The size of the fault 

correlation level, as measured by L(k), is illustrated in Figure 3. Experimental r ( k )  

estimates are shown in figure 4. The largest inter-component fault-correlation is 

exhibited by set 4(2.1) and the smallest by set 6(2.1). From Table 1 we see that the 

most unreliable set  is 13 (average failure probability is 0.4431, and the most reliable 

subset is g2.1) with an average failure probability of 0.185. The component sets 6, 13 

and 9 reach infinite gain (no "undetected" failures (faults)) for 6, 10 and 9 developed 

components respectively. Using the conservative ONEPLUS FAILURE events, subset 

4(2.1) never detects aU the potential failures. 

n 

The slopes of the curves in Figure 2, and the gain they imply vary among the 

subsets. The reason for this difference is primarily the intemomponent failure 

correlation. The influence of the average component failure probability of a set 

appean to be  far less important than the correlation effect. For example, the sets 6 

and 9 are approximately equally reliable but the lower correlation set 6(2.1) offers 



100000 'I 

10000 .r  

1000 ., 

1 0 0 .  

10 .' 

1 8  4 

1 2 3 4 5 6 7 e 9 

Number of Components (k) 

Figure 2.  Cain, C(k),  vs. Number of Developed components (k). The gain estimate of 
the ratio of "undetected" failures in an average single component to "undetected" 
failures remaining after back-to-back testing of the components computed using 
ONEPLUS FAILURE events. 

2 0  4 

1.6 a '  

A 

1.6 *d \ 
1.4 * I  

\ 
\ 

0. 

0.4 #&-+, 

1 2 3 4 5 6 7 6 0 

Number of Components (k) 

Figure 3 .  L(k) vs. Number of componentdk). Illustration of the relative inter- 
component correlation. The difference between the curves indicates the difference in the 
failure (fault) dependence. 



_. i.6 

0.0 

0.8 

0.7 

0.6 

Gamma 0.5 

0.4 

0.3 

0 2  

0.1 

0.0 
1 2 3 4 5 6 7 8 9 

Number of Components (k) 

Figure 4 .  
using ALL FAILURE events. 

(k) vs. Number of Components. Experimental estimate f (k) computed 

better gain figures. Similariy, the most "unreliable" set. 13(2.1)* has a comelation 

level which appears to be smaller than that of set  g(2.1). and its gain curve lies above 

that for the set 9. On the other hand, set 4(2.1) has relatively high reliability, but  its 

components are highly correlated resulting in a gain curve far below any of the other 

sets. 

Figures 5 to 8 show the experimental and theoretical gain curves for each of 

the component subsets separately. Filled (black) symbols refer to the experimental 

data and unfilled symbols to theoretical computations. Theoretical computations 

represent worstease bounds obtained using Model I (triangles), Model I1 (sqwres), 

and Model I11 (diamonds, equation (10) using the maximum fault span observed for 



.. 
17 

conservative gain estimates). In the case of set 4(2.1) this last l imit  would be 

constant and equal to  one, so diamonds in that case represent computat ions for t h e  

span of 3 recorded using the  ALL FAILURE events. 

I t  should be noted t h a t  the theoretical  models, as defined in sec t ion  2, do not 

account f o r  the tolerance e f f e c t  &e. a range of FAILURE events from ONEPLUS t o  

ALL), but  only for  the ALL FAILURE events. Therefore the  theore t ica l  values 

obtained using these models will underestimate the actual  failure probabili ty as 

measured by FAILURE or MAJORITY FAILURE events. Hence, to  va l ida te  the 

models we  use the ALL FAILURE event data. XLSo note  tha t  any resu i t  checking 

during the development/testing of Components effect ively acts as a n  additional 

version (even manual computations may qualify 85 a "version"). Therefore ,  in 

practice the minimal number of "developed" components is usually 2. 

Figure 5 shows the FAILURE (EG61, MAJORITY FAILURE (EGGM), and ALL 

FAILURE (EGGA), es t imates  of the gain for the six component set. Also shown are 

the worst-case gain curves expected using Model I, TG6(I), and Model 11, TGG(II), as 

wel l  as a Model I11 based bound (equation (10) with m=6, s=5, F=0.379), TG6(III/S). It 

is interesting to observe that for the ALL FAILURE events  the maximum fault span 

is one less than it is for the ONEPLUS FAILURE events. The conservat ive 

experimental  gain curve is well  approximated by the Model I1 womt-case bound, 

while t he  MAJORITY and ALL FAILURE est imates  are better then  this bound. 

Figure 6 shows the gain curves for the subset  32.1). Only the ONEPLUS 

FAILURE and the ALL FAILURE experimental  data are given. The component  sets 

6(2.1) and  g(2.1) have very s imilar  average component failure probabilities, bu t  they  

have significantly different  inter-component failure dependence charac te r i s t ics  (see 

Figure 3). The e f f ec t  of the increased inter-component failure correlat ion in subset  

g(2.1) manifests as a reduced slope of the 9 gain curves. The conservative gain 



loo00 

1000 

100 

10 

1 

1 2 3 4 5 6 

Number of Components (k) 

Figure 5 .  G(k) vs, Number of Components. Experimental and theoretical gain curves 
for set 6(2 . l ) .  

100000 

1 0 0 0 0  

1000 

1 0 0  

10 

1 

1 2 3 4 5 6 7 8 9 10 

Number of Components (k) 

Pigure 6 .  G(k) vs. Number of Components. Experimental and theoretical gain curves 
for set 9(2.1). 



.. 19 

1 WOO0 

1000 

100 

10 

1 

I A 

6- EG13 

f f i l 3 A  

A- TG1 3(l) 

0- TG1 3(11) 

0- TG1 3fl11/9) 

2 4 6 0 10 12 

Number of Components (k) 

Figure 7 .  G(k)  vs. Number of Components. Experimental and theoretical gain cQrves 
for s e t  13(3.1). 

1000 

10 

1 

1 .o 1 .5 20 2 5  3.0 3.5 4.0 

Number of Components (k) 

Figure 8. G(k) vs. Number of Components. Experimental and theoretical gain curves 
for set 4(2.1). 



20 * 

estimates f a l l  below the Model i predictions based on the average failure probability 

of the whole subset. Figures 7 and 8 illustrate the gain information for subsets 

13(3.1) and 4(2.1) respectively. 

Considering all four sets we note that the Model I worst-case bound provides 

a satisfactory lower l imit  with respect to all ALL FAILURE experimental curves. X 

reasonable conservative limit seems to be provided through the Model I11 bound. Work 

in progress at NCSU shows that good estimates of the correlation behaviour and of 

the bounds can be obtained without the use of a special golden program. For 

example, curve TGS(1x) w a s  computed using Model I with an estimate of 'p based 03 

on the relative performance of the 9 components. Each component w a s  in turn 

treated as the gold program and average failure probability of the other components 

was computed relative to it. A grand average was then computed over all the 

estimates €or us in Model I. 

4. Conclusions 

Using functionally equivalent software components we have experimentally 

investigated the effectiveness of back-to-back testing process. We compared the 

unreliability offered by a multiversion development approach with back-to-back 

testing, with the average unreliability of a single component. Even conservative 

estimates indicate a considerable increase in the probability of detecting failures 

(faults) if back-to-back testing is used. Three models of the back-to-back testing 

process were presented, and it was shown that they offer good estimates of the lower 

bounds on the observed multiversion development reliability gains. 



5. References 

CAvi841 A. Avizienis and J.P. Kelly, "Fault-Tolerance by Design Diversity: Concepts and  
Experiments", Computer, Vol. l?, pp. 67-80, 1984 

CBis861 P.G. Bishop, D.C. Esp, M. Barnes. P Humphreys, G. Dahl, and J. Lahti, 'lPODS-A 
Project on Diverse Software", IEEE Trans. Soft. Eng., Vol. SE-12(9), 
929-940, 1986. 

CEck851 D.E. Eckhardt, Jr. and L.D. Lee, "A Theore t ica l  Basis for the Analysis of 
Multivenion Software Subject to Coincident  Errors", IEEE Trans. Soft. 
Eng., Vol. SE-11(12), 1511-1517, 1985. 

Results from the Second Generat ion Multi-Version Software Experiment", 
submitted fo r  publication, 1986. 

Independence in Multiversion Programming", IEEE Trans. Soft. Eng., Vol. 

CKel861 J. Kelly, D. Eckhardt, A. Caglavan, J. Knight, D. McAllister, M. Vouk, "Early 

[KniSGI J.C. Knight and N.G. Leveson, "An Experimental  Evaluation of the  assumption of 

[Mad841 W.X. Madden, and K.Y. Rone, "Design, Development, In teqa t ion :  Space Shut t le  
Primary Flight Software System", Comm. of the  ACM, Vol. ?7(8), 902-913. 
1984. 

[Mar821 D.J. Martin, "Dissimilar Software in High Integri ty  Applications in Flight 
Controls", hoc. AGARD - C P  330. 36.1-36.13, September  1982. 

[Nag821 P.M. Nagel and J.A. Skrivan, "Software Reliability: Repetit ive Run 
Experimentation and Modeling", BSC-40366, Boeing, Seatt le.  Wa., 1982 

[Nag841 P.M. Nagel. F. W. Scholz and J.X. Skrivan, "Software Reliability: Additional 
Investigation into Modeling with Repl ica ted  Experiments", NASA 
CR172378, Boeing, Seattle, Wa., 1984 

[Ram821 C.V. Ramamoorthy and F.B. Bastani, "Software reliability - status and 
perspectives", IEEE Trans. Soft. Enq., Vol. SE-8, 354-371, 1982 

[Ran751 E. Randell, "System structure for so f tware  fault-tolerance", IEEE Trans. Soft. 
Eng., Voi. SE-1, 220-232, 1975 

[Sco83,a] R.K. Scott ,  "Data Domain Modeling of Faul t  Tolerant Software Reliability", 
Ph.D. Dissertation, North Carolina State University, Raleigh, North 
Carolina, 1983 

CSco83,bI R.K. Scott, J.W. Gault, D.F. McAllister and J. W i g g s ,  "Experimental 
Validation of Six Fault-Tolerant Software Reliability Models", Pmc. IEEE 
14th Fault-Tolerant Computing Symposium, pp. 102-107, 1983 

[Sco84] R.K. Scott, J.W. Gault, D.F. McAllister and J. W i g g s ,  "Investigating Version 
Dependence in Fault-Tolerant Software", AGARD 361, pp. 21.1-21.10, 1984 

[Sco86,b] R.K. Scott, J. W. Gault and D.P. McAllister, "Fault-Tolemnt Software 
Reliability Modeling", IEEE Trans. Sof tware  Eng., 1986, to appear 

[Sun851 C. Sun, "Reliability of N-version programming f o r  f ini te  output spaces", M.Sc. 
Thesis, North Carolina S ta t e  University, Raleigh, North Carolina, 1985 

[Tro85] R. Troy and C. Baluteau, "Assessment of Sof tware  Quality for the  Airbus A310 
Automatic Pilot", Proc. FTCS 15, Ann Arbor, USA, (IEEE CS Press), 
438-443, June 1985. 

[VouBS] M.A. Vouk, D.F. McAllister, K.C. Tai, "Identification of correlated failures of 
fault-tolerant software systemsf*, in Proc. COMPSAC 85, 437-444, 1985. 

[Vou86a] M A  Vouk, D.F. McAllister, K.C. Tai, "An Experimental  Evaluation of t he  
Effectiveness of Random Testing of Fault-tolerant Software", Proc. 
Workshop on Software Testing, Banff, Canada, IEEE CS Press, July 1986. 

[VouSBb] M.A. Vouk, M.L. Helsabeck, K.C. Tai. and D.F. McAllister, "On Testing of 
Functionally Equivalent Components of Fault-Tolerant Software". Proc. 
COMPSAC 86, 414-419, 1986. 

SE-12(1), 96-109, 1986. 

W ig841 J.E. W i g g s ,  "Experimental Validation of Fault-Tolerant Software Reliability 
Models", M.Sc. Thesis, North Carol ina State University, Raleigh. North 
CUOliM, 1984 



NASA/NAG-1-667/R/3.O/NCSU.CSC. (DFM,KCT, MAV)/Oct-87 

Appendix 111 



NASA/NAG-1-667/R/3.O/NCSU.CSC.( DFM ,KCT,MAV)/Oct-87 

RSDIMU Acceptance Testing System 

Version 3.0 

May 1987 



Sep 11 08:34 1987 ReadMe Page 1 

Fault-Tolerant Software Experiment 

OVERVIEW OF ACCEPTANCE SOFTWARE AND PROCEDURES 

RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS) 

RSDIMU-ATS 3.O/PR/UNIX/FTS.NAsA-LaRC.Va/NCSU.CSC/O5-Mar-87 

This note applies to the releases 3.0 of RSDIMU-ATS. The release 
complies with the version 3.2/10-Feb-87 of the RSDIMU specifications. 
This system is released for restricted use by sites involved in the NASA-LaRC 
fault-tolerant software experiment. 

Institutions participating in the program: 
NASA-Langley Research Center, CRA, NCSU, UVA, UCLA 
(ex-participants: RTI, UIUC). 

Re-distribution and use of this system for purposes other than the 
ones compatible with the current experiment is prohibited unless 
explicit permission is obtained from the NASA-Langley Research Center 
coordinator for this experiment (Dr. D.E. Echkardt). 

The RSDIMU Acceptance Testing System (RSDIMU-ATS) was built to help 
test and analyse multiversion RSDIMU procedures generated as part of a 
NASA sponsored fault-tolerant software experiment in progress since 
Spring 1985. RSDIMU-ATS is intended for use in 
a UNIX environment and may need to be modified if UNIX-like, or 
non-VAX systems are used. Part of the software needs to be 
recompiled if used on non-VAX hardware (e.g. SUN workstations). 
It was tested on VAX 11/780,785, and MicroVAX I1 hardware 
under UNIX 4.2/4.3BSD, and Ultrixl.l/l.2 respectively. 

The system is shipped on a 9-track magnetic tape (standard size) in 
tar format at 1600 bpi, as directory tree rooted in ./fts87. 

fts87 
I 

I I I I I I I I I 
ReadMe accept code data generators* gold nonVAX - host** certify testcases* 

* shipped on request only 
* *  to VAX sites shipped on request only 

The following notes discuss more important features of the system. 

1. ReadMe is the file containing this note. 

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/OS-Mar-87 

2. The core of the acceptance testing system is located in the directory 
"accept". It is intended to help an experimenter run, evaluate and request 
corrections of programs in a semiautomatic fashion. A more detailed 
description of the accept system is found in ReadMe notes in 
the accept/ and certify/ directories. The system is based on the use 



Sep 11 0 8 : 3 4  1987 ReadMe Page 2 

of a "golden" program for adjudication of the correctness of the answers 
generated by the code being tested. The RSDIMU code is tested one 
component (version) at the time against a pre-recorded output expected from 
the "golden" code. Any differences from the expected answers have to be 
examined in detail, and corrections justified in error correction 
reports. Our confidence in the correctness of the "golden" code is 
very high, however experimenters should still be on the look-out 
for discrepancies indicating possible "golden" code errors. If such are 
discovered all on-site testing should be frozen, and the RSDIMU-ATS 
distribution site (NCSU) notified immediately. Similarly, if errors are 
discovered in the ATS harness scripts please notify NCSU. A detailed 
description of the acceptance procedure is located in accept/ ReadMe notes. 
The basic idea is to follow an iterative correction process, i.e 
test-correct (one or more errors at the time)-test etc. All communication 
with programmers should follow guidelines given in certify/ReadMe notes. 
Testing involves location of the fault(s) causing the first 20 failures 
and its (their) removal. This repeats until no errors 
are detected by the supplied acceptance test set. 
The same test data set is used on all programs at all sites. 

An extended analysis system providing MCF profile (intensity) 
analysis is available on request, but it should not be used to perform 
acceptance testing as part of the current experiment (see note 4 ) .  

3. All the testcases in this release of the system comply with the 
specification version 3.2/10-Feb-87. A test case entry consists of an 
input record, and an output record. The latter contains what is believed 
to be the correct answer to the input record according to the 3.2 specs, 
and as generated/given by gold3v2.i. 

A set of test cases was designed and generated for acceptance testing 
rsdimu code. It consists of a group of 796 extremal/special value (ESV) 
test cases and a group of 400 random test cases. All test cases are located 
in the directory data/. 

A successful pass through all the test cases gives an estimated lower 
limit on the reliability of the rsdimu code of about 0.992 (valid for 
the employed sampling profiles). 

More details about the test cases can be found in the ReadMe notes in the 
data/ directory. 

Directory "generators" contains files and code one may need to generate 
the ESV and random data from scratch. It is not expected that a 
user working in a VAX-UNIX environment would have to do that (however, 
see notes in the nonVAX host directory). In fact, it is not recommended 
that sites generate (or-re-generate) data without consultation since 
rounding and other subtle differences might appear between the newly 
generated cases and the one3 on this distribution tape, resulting 
in the use of somewhat different cases by different sites. 

Directory testcases/ contains raw esv test cases (text form). 

tested. If you do not wish to keep your code in that directory either use 
4 .  Directory "code" is assumed to contain the rsdimu code that is being 



S.ep 11 08:34 1987 ReadMe Page 3 

pointers/links to the code, or change the appropriate portions of the 
acceptance system. 

Note that RSDIMU-ATS is sensitive to the overall file structure that is 
used in the system, and any changes should be made only after consultation 
with NCSU. 

It is extremely important for the success of the experiment that you 
keep not only the final, corrected version of each program, but that 
each intermediate version submitted for acceptance testing is saved 
and tagged with an appropriate version number and information about 
the changes/corrections (using the provided change form, in certify). 

It is important that you promptly review all the returned error-reports. 
In this experiment we are not implementing 
back-to-back version testing and a formal automatic correlation 
search-and-remove loop (we have the tools, but since this was not 
part of the original experimental design we do not want to change the 
rules now). However, all the discrepancies between individually 
submitted and tested components and the "golden" answers should be 
scrutinized with extreme care in case the difference is due to the 
"golden" code, rather than your own code (a posible cause could be use 
of RSDIMU-ATS in an environment not 100% compatible with the ones 
in which the system was tested, see notes in nonVAX host/ directory). - 

5. The "certify" directory contains code and files that are sent to each 
maintenance/certification team. It contains a basic rsdimu driver 
(to avoid interface problems) and instructions on its use. It also 
contains a sample input and output, and an electronic error report file. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* certify ReadMe and ReadMe to certify notes to reflect local * 
* Local site experimenters have to change/adjust the * 
* electronic mail address, and-local version management * 
* environment and approach (RCS, SCCS, or similar). * 

* to prevent accidental changes in the team's testing * 
* environment (prevent changes by making yourself the owner. * 

- 

* * 
* You shou ld  a l s o  make all 'fts-' files in certify 'read - only' * 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Whenever a change is made in the code it is expected that the programmer(s) 
will record it using this report. A new version of the code, and error 
and change report(s), have to be returned to the experimenters together. 

It is essential that each program be given a version number and 
associated with it the date of it creation. Every time a program is 
corrected its version changes and should be recorded in the correction 
report, as comments in the code itself, and should reflect in the file 
name for the new code ( a s  kept in the "code" directory, and in the 
"newcode" directory in accept/). 

All versions of the code, i.e. all submitted corrected code, should be 
preserved for future analysis. Examples are given in the "certify" directory 
and in the "accept" (detailed procedure). Use magnetic tapes. 



Sep 11 08:34 1987 ReadMe Page 4 

If (disk or tape) space is a problem, we suggest that you store only the 
difference between the original version and successive corrections 
using for example Unix diff processor. 

FOR ANY INFORMATION REGARDING THIS SYSTEM PLEASE CONTACT: 

M.A. Vouk 
North Carolina State University 
Department of Computer Science, Box 8206 
Raleigh, NC 27695-8206 

Tel: 919-737-7886 (office) 
919-737-2858 (departmental office) 

USENET: mcnc!ece-csc!vouk 
ARPA: vouk@ece-csc.ncsu.edu 



Sep 11 08:39 1987 accept.ReadMe Page 1 

Fault-Tolerant Software Experiment 

ACCEPTANCE ENVIRONMENT 

RSDIMU-ATS 3.0/PR/uNIX/FTS.NASA-LaRC.Va/NCSU.CSC/O5-Mar-87 

This is the basic acceptance environment. Most of the shell scripts and 
programs have either a help which describes its activation parameters 
(invoke the script without any parameters), or internal documentation. 
Where needed program source code is provided. 

Current version of the system is intended for UNIX csh environment under 
either 4.2/4.3BSD, or Ultrix 1.1/1.2, running on VAX hardware. 

Comparison of the values computed by programs with those using golden 
code is done using relative tolerance. It is possible to switch to 
absolute tolerances if that is desired. Do not do that for acceptance 
testing. 

Testing tolerances are set to the following values within fts accept 
and can be changed by modifying statements within fts - accept Tsee 
fts - accept help): 

DiffBestEst = 0.00024414 
DiffLinOut = 0.00024414 
DiffOffset = 0.00024414 
tolerance - mode = relative 

Please do not use different tolerances for your acceptance testing 
before getting concurrence from all the other testing sites. Otherwise we 
shall each end up testing and correcting different things. 

There is no tolerance regarding the display values (five digits), 
but one could allow for a difference in the last displayed digit. 
To avoid display related warnings and "failures" of the type: 
g o l d  4.9999 vs. computed 5.0000, and to therefore test only the 
display algorithm, we inject (using voteestimates) golden values 
for bestest and other real-valued variables prior to display computations. 

The acceptance harness tests for agreement on eleven output variables 
(infact 59, if elements of arrays are counted separately, number of elements 
is given in parentheses). They are: 

LINOFFSET, LINNOISE, LINOUT, LINFAILOUT, SYSSTATUS, BESTEST, CHANEST, 
CHANFACE, DISMODE, DISUPPER and DISLOWER. 

Critical variables are: (3)BESTEST, (8)LINFAILOUT, ((1)SYSSTATUS) 

Non-critical: (1)DISMODE, (3)DISUPPER, (3)DISLOWER, (12)CHANEST, (4)CHANFACE 

Intermediate: (SYSSTATUS), (8)LINOFFSET, (8)LINNOISE, (8)LINOUT 

All variables are checked for each test case. 

For more details on the checking of variables and tolerance used see 



Sep 11 08:39 1987 accept.ReadMe Page 2 

the listings of the fts harness files, and the April 86 NCSU Working 
Notes from the Langley Zeeting (NASA.FTS/NCSUFJN/l/Apr-86)t and 
UCLA notes from the same meeting. 

To avoid accidental correctness problems output variables are "trashed" 
before each test case is run. 

~ 

The trash values injected in the various output variables of rsdimu are 
as follows : 

LINOFFSET : -9999.0 
L I NOUT : 999999.0 

BESTEST.ACCELERATION [1..3] : 9999999.0; 
CHANEST [l..4].ACCELERATION [1..31 : 9999999.0; 

DISMODE : 65534 
DISUPPER [1..3] : 65534 
DISLOWER [1..31 : 65534 

The values for real variables (first four listed above) 
cannot occur for the current set of input data, and are highly unlikely 
otherwise. The display values are supposed to turn on only the G segment for 
the least significant digit. Boolean output variables, and user defined 
are initilized by the compiler (to zero). 

Primary scripts: 

fts - certify - shell script which activates fts accept with all.dat 
test data and produces a correction request report 
and test cases for the cerification team by 
running fts correq. Certain program naming conventions 
and running-options are built-in. 

fts - accept - shell script for constructing, compiling and running 
harness+rsdimu code. 

l 

fts - correq - correction request generation shell script, generates 
a report/request suitable for mailing to the 
maintenance teams. 

Utility scripts and programs: 

1 fts - listdata - script for listing test cases from the test data files. 
fts - prnt - data listing program. 

fts - prterr - program produces test cases suitable for use by 
fts - driver.p code. 

l fts - terl - block coverage computation script. 
fts - IC - lower-case filter. 



Sep 11 08:39 1987 accept.ReadMe Page 3 

fts uc 

fts nc 
- 

- 

- upper-case filter. 
- comment-delimiters lex-based filter. 

Source code and script parts: 

fts - io 

fts - dbxbug - dbx bug control code. 
fts - dbxinit - dbx initialization code. 
fts - harness.declare - test harness declarations. 

fts - harness.rest 

fts - msgtext 

fts - prnt.p 

fts - prterr.p 

- sed control code to flag "integer","real",and rsdimu i/o. 

- test harness body. 
- correction request message. 
- source code for fts prnt. 

- source code for fts prterr 
- 

- 

Documentation and examples: 

ReadMe 

ReadMe to certify - certification procedure using fts certify 
ReadMe - accept 

example/ 

- general information about the "accept" directory. 
- - -  

- using fts accept. - 

- directory with example outputs from an fts accept run - 
(ncsuD7.i tested by executing: 

fts accept ncsuD7.i ncd7 all -c  -x > test.ncd7allti 
fts-correq - ncd7 all > correq.ncd7 
1 .  

newcode/ - empty directory for testing results (reminder), 

Data links: 

all .dat 

esv.dat - link to extrema1 and special value (esv) test cases. 
randNCSU.dat 

randCRA.dat 

- symbolic link to esv+random acceptance test cases. 

- link to independent random test cases (uniform profile). 
- link to independent random test cases (shaped profile). 

All .dat files are in ../data. 
It is also assumed that the code to be tested is in ../code. 



Sep 11 08:39 1987 accept.ReadMe Page 4 

The fts - IC, fts - uc, fts - nc, and initial fts - io filters were written by RTI. 

The filter fts - io (integer/real, and i/o) is rather crude. 
It will miss 'real' at the begining of a line. 
It may also cause false warnings regarding use of integer and real types, 
and of i / o  in the rsdimu code. In those cases hand editing and 
recompilation of <work - name>.p (rsdimu+harness) files may be 
necessary. If editing, search for two question marks ? ? .  
If recompiling use: pc -s -C -g -2 options. Re-run fts - accept without 
the -c option. 

Note that -s compiler option yields messages regarding non-standard 
use of Pascal in the code (primarily the harness code). These 
messages should be ignored. 

l Alternatively, delete the first two lines (real/integer), 
or third and fourth lines (i/o) of the fts - io code. 

fts nc filter for comments may cause problems by making nested 
comments of type { ( *  comment * ) }  transform to { {  comment } }  
which is illegal. This filter can be excluded from the processing 
pipe in fts - accept. 



Sep 11 08:39 1987 accept.ReadMe - accept Page 1 

Fault-Tolerant Software Experiment 

PROCEDURE FOR ACCEPTANCE TESTING 

RSDIMU-ATS 3.0/PR/uNIX/FTs.NASA-LaRC.Va/NCSU.CSC/O!j-Mar-87 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* For the purpose of conducting the acceptance testing (certification * 
* Unless you intend to use fts accept directly, rather tEan through * 
* of the 20 programs) it is recommended that you use fts certify. * 
* the fts certify facility, yoc do not need to read this file. * - * * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* * * * * * *  

It is assumed that the communication between the experimenters and the 
maintenance personnel will be via electronic mail. It is further 
assumed that the experimenter has full access to maintenance personnel 
files, but the reverse is not true. ~t is also assumed that the acceptance 
testing is performed in csh in UNIX 4.2/4.3BSD, or Ultrix 1.1/1.2 
environments running on vAX hardware (else see nonVAX-host/ directory). 

I. 

The testing begins by placing the code which is to be tested into the code/ 
directory. Enter the accept/ directory and start 
the initial round of testing by executing the fts accept shell script. 
It is recommended that you use the -x option and Eenefit from the 
coverage information thus provided. For example: 

fts - accept ncsuB2.i ncb2 all -c -x > test.ncb2all& 

NOTE: YOU CANNOT RUN TWO fts accept JOBS FROM THE SAME DIRECTORY AT THE 
SAME TIME (IN BACKGROURD). THE SYSTEM WAS NOT DESIGNED FOR THAT 
AND YOU CAN END UP WITH A MESS. YOU CAN, HOWEVER, KEEP TWO 
DIRECTORIES, SAY ACCEPT1 AND ACCEPT2 AND RUN AN fts - accept FROM 
EACH OF THEM WITHOUT INTERFERENCE. 

The run should either result in error messages (exit code <= 8) or should 
complete successfully (exit code 11). when the background job ends check the 
test.<name>all file carefully. 

* No compiler errors or missing voter call problems (exit status > 5 ) .  

* Fatal execution time errors exit status = 7. 

* Differences detected from expected output exit status =8. 

11. 

If the test run ends with any status but exit(ll), i.e. complete success, 
produce an error correction request for the maintenance team 



Sep 11 08:39 1987 accept.ReadMe - accept Page 2 

by running fts - correq script. For example: 

fts - correq ncb2 all > correq.ncb2 

Make sure that the number of failures you wish to analyse is set to 1. 
For this see fts correq code (run fts correq without parameters). 
File errdata.ncb2 will contain input aata for failed cases in a form 
that is suitable for use by the "fts driver.p" code in certify/. 
Check the content of correq.ncb2 and-mail it to the maintenance team 
working on the <name> code (in examples: ncsuB2.i and higher versions, 
i.e. <name>=ncb2, or ncb3 etc). 

You may also have situations where you need to send non-standard messages 
as part of the correction request. For example, people may send you 
code and reports with incorrect or inappropriate version numbers. 
In situations like that create and insert the message at the begining 
of the correq.<name> file, just after the standard initial paragraph. 

111. 

Now create a subdirectory that will hold the starting, and all subsequent 
versions for a particular program(mming team). For example: 

mkdir newcode/ncsuB 

make a sub-subdirectory for the current program version: 

mkdir newcode/ncsuB/v2 

and move all the files you want to keep into that sub-sub directory, e.g. 

mv *ncb2* newcode/ncsuB/v2 

You may wish to use diff and compress processors to reduce stored 
file sizes. 

Unless you are interested in doing further correlation analysis and 
extracting intensity functions and experimental MCF profiles (for the 
purpose of detecting and eliminating inter-version dependence during 
the acceptance testing, not assumed a standard procedure in this 
experiment) you may not wish to keep trace.<name>all, vect.<name>all and 
binrep.<name>all files. The terl.<name>all file contains a compressed 
overview of the executed code blocks (all begining with 0.---( have not been 
executed and you should find out why). You will not generate the 
trace, vect and terl files, nor keep binrep if you do not use the - x  option. 
You may also wish to dispense with <name> and <name>.p files which are 
the executable harness+rsdimu and source harness+rsdimu respectively. 
We would recommend that you save at least the test.<name>all and 
the error.<name>all files. 

Any communication (questions and answers) received prior to corrected 
program version are also saved into the "active" newcode sub-sub directory 

etc. a s  "ql", "alt' , llq2", lla2" 

IV. 



Sep 11 08:39 1987 accept.ReadMe - accept Page 3 

Upon receiving a message with the location of the latest corrected 
version, and of the correction/change report(s), cd to accept/: 

* Create a new subsubdirectory in the appropriate program subdirectory 
e.g. nCSuB3.i location and change report have just been received 

mkdir newcode/ncsuB/v3 

* Save the location/change report message into v<number>, e.g. 
from inside the mail: 

s < # >  newcode/ncsuB/v3/correction - report 

where < # >  is the number of the mail message on your h-list. 

* Then (<path> points to maintenance team location the code): 

cp <path>/ncsuB3.i newcode/ncsuB/v3/ncsuB3.i 

cp <path>/ncsuB3.i ../code/ncsuB3.i 

fts - accept ncsuB3.i ncb3 all -c -x > test.ncb3all& 

Now repeat the previous steps depending on the results of the test run, i.e. 
run a fts correq if necessary, move results of the run into, for example v3 
etc. Use appropriate university name and version numbers. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Notes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

It is expected that the maintenance team makes a single error correction 
that was requested by the correq.<name> report and sends back to you 
a mail message giving the location in their directories of the new 
and corrected code version, the new version number and one (or more 
if several changes had to be made to correct an error) error correction 
report(s). Save the received location message and the correction report into 
the "active" newcode sub-sub directory as "correction - report", e.g. 

newcode/ncsuB/v2/correction - report 

You procede then to pick-up the new version of the code and copy 
it into appropriate newcode sub-sub file, and ../code file (you may wish 
to use pointers/links to save space instead). Check that they send you 
the code and the report with an appropriate version numbers everytime. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
> > 
> Check the error report they send against the test report you have!!! > 
> If there is any indication at all that the difference may be due > 
> to an error in the "golden" code (i.e. supplied expected answers) > 
> freeze all testing and immediately inform ATS distribution site, > 
> i.e. NCSU (see fts86/ReadMe for address, phone etc.). > 
> > 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



Sep 11 08:39 1987 accept.ReadMe - accept Page 4 
i 

It is extremely important for the success of the experiment that you 
keep not only the final, corrected version of each program, but that 
each intemediate version submitted for acceptance testing is saved 
and tagged with an appropriate version number and information about 
the changes/corrections (using the provided change form). It is 
expected that programmers will correct one error at a time (and should 
not be given requests for more than one correction at a time), so 
that we can keep track of the influence particular errors had on 
the overall system failure probability etc. 

The "certify" directory contains code and files that would be sent to each 
maintenance/certification team. It contains a basic rsdimu driver 
(to avoid interface problems) and instructions on its use. It also 
contains a sample input and output, and an electronic error report file. 
Whenever a change is made in the code it is expected that the programmer 
will record using this report. The new version of the code and the error 
and change report copy are both returned to the experimenters. 

I It is essential that each program be given a version number and 
associated with it the date of it creation. Every time a program is 

I corrected its version changes and should be recorded in the correction 
report, as comments in the code itself, and should reflect in the file 
name f o r  the new code ( a s  kept in the "code" directory, and in the 
"newcode" directory in accept/). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



Sep 11 08:39 1987 accept.ReadMe to certify Page 1 - -  

Fault-Tolerant Software Experiment 

PROCEDURE FOR CERTIFICATION TESTING 

RSDIMU-ATS 3.O/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87 

It is assumed that the communication between the experimenters and the 
maintenance personnel will be via electronic mail. It is further 
assumed that the experimenter has full access to maintenance personnel 
files, but the reverse is not true. It is also assumed that the acceptance 
testing is performed in csh in UNIX 4.2/4.3BSD, or Ultrix 1.1/1.2 
environments running on VAX hardware (else see nonVAX host/ directory). - 

I. 

The testing begins by placing the code which is to be tested into the code/ 
directory. Enter the accept/ directory and start 
the initial round of testing by executing the fts certify shell script. 
For example: 

- 

or 
fts - certify ncsuD7.i ncd7 

fts - certify ncsuD7.i ncd7 > certify.ncd7& 

The latter form should be used if you wish to run in the background. 

NOTE: YOU CANNOT RUN TWO fts certify JOBS FROM THE SAME DIRECTORY AT THE 
SAME TIME (EVEN IN BACEGROUND). THE SYSTEM WAS NOT DESIGNED FOR THAT 
AND YOU CAN END UP WITH A MESS. YOU CAN, HOWEVER, KEEP TWO 

EACH OF THEM WITHOUT INTERFERENCE. 
DIRECTORIES, SAY ACCEPT1 AND ACCEPT2 AND RUN AN fts certify FROM - 

fts certify calls fts accept with all.dat testset and -c option. Output 
is automatically routed into file test.tname>all. This file will then 
contain information about the acceptance test run, and will be used 
as the basis for forming a correction request file correq.<name>. 

The run should either result in error messages (exit code <=  8) or should 
complete successfully (exit code 11). When the job ends check the 
test.<name>all file carefully. 

* No compiler errors or missing voter call problems (exit status > 5). 

* Fatal execution time errors exit status = 7. 

* Differences detected from expected output exit status =8. 

11. 

If the test run ends with any status but exit(ll), i.e. complete success, 
an error correction request will be produced for the maintenance team. 
The correction request will be in correq.<name>, and the test cases 



sep 11 08:39 1987 accept.ReadMe - -  to certify Page 2 

mkdir newcode/ncsuD/v7 

and move all the files you want to keep into that sub-sub directory, e.g. 

mv *ncd7* newcode/ncsuD/v7 

Unless you are interested in doing correlation analysis and 

that caused up to the first 2 0  failures will be in errdata.<name>. 

1 Check the content of correq.<name> and mail it to the maintenance team 
working on the <name> code (in examples: ncsuD7.i and higher versions, 
i.e. <name>=ncd7, or ncd8 etc). 

i 

Mail or copy directly into the directory of the maintenace team file 
errdata.<name>. The format of the data in this file is suitable for 
direct use by their "driver" program, so that they can do their own 

l testing. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* W A R N I N G  * 
* * 
* Your system may have a byte limit on mail messages that can be passed * * through it (e.g. 100,000 bytes). In that case you may find that * 
* your correction report may be too large, and may become truncated * 
* by the e-mail system. ~t is safer to send only short messages and * 
* using cp. * * to transfer long files directly into certification team's directory * 
* * 
* e.g. 20  failures in ncsuD7.i generate a correq.ncd7 request file of * 
* about 4000 lines of code (about 170,000 bytes). * * * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

You may also have situations where you need to send non-standard messages 
as part of the correction request. For example, people may send you 
code and reports with incorrect or inappropriate version numbers. 
In situations like that create and insert the message at the begining 
of the correq.<name> file, just after the standard initial paragraph. 

111. 

The following procedure describes program and data version management 
without RCS or SCCS. You should read it regardless of the management 
procedure you will use so that you can decide what to save/store. 

Create a subdirectory that will hold the starting, and all subsequent 
versions for a particular program(mming team). For example: 

mkdir newcode/ncsuD 

~ make a sub-subdirectory for the current program version: 



Sep 11 08:39 1987 accept.ReadMe - -  to certify Page 3 

experiment) you may not wish to keep trace.<name>all, vect.<name>all and 
binrep.<name>all files. The terl.<name>all file contains a compressed 
overview of the executed code blocks (all begining with 0.---1 have not been 
executed and you should find out why). You will not generate the 
trace, vect and terl files, nor keep binrep if you do not use the -x option. 
When using fts certify this is default in or der to reduce program testing 
time and sve sforage. 

You may also wish to dispense with <name> and <name>.p files which are 
the executable harness+rsdimu and source harness+rsdimu respectively. 
We would recommend that you save at least the test.<name>all and 
the error.<name>all files. 

To save space you can save only the difference in the code between the 
starting version and the new version (e.g. ncsuD7.i and ncsuD8.i, or 
ncsuD7.i and ncsuD9.i). For that purpose use the diff processor 
(read DIFF(1) manual). 

You can further reduce storage space by "compressing" all the saved files 
using compress, or any other code compression processor available on 
your machine. 

Whatever the scheme, make sure that you can rebuild the starting files 
and versions. 

Any communication (questions and answers) received prior to corrected 
program version are also saved into the "active" newcode sub-sub directory 
as "ql", llaltl, I1q2It, "a2" etc. 

IV. 

Upon receiving a message with the location of the latest corrected 
version, and of the correction/change report(s1, cd to accept/: 

* Create a new subsubdirectory in the appropriate program subdirectory 
e.g. ncsuD8.i location and change report have just been received 

mkdir newcode/ncsuD/v8 

* Save the location/change report message into v<number>, e.g. 
from inside the mail: 

s < # >  newcode/ncsuD/v8/correction - report 

where < # >  is the number of the mail message on your h-list. 

* Then (<path> points to maintenance team location the code): 

cp <path>/ncsuD8.i newcode/ncsuD/v8/ncsuD8.i 

cp <path>/ncsuD8.i ../code/ncsuD8.i 

alternative for latter (saves space): 
{ 

cd ../code 



Sep 11 08:39 1987 accept.ReadMe - -  to certify Page 4 

In -s ../accept/newcode/ncsuD/v8/ncsuD8.i ncsuD8.i 
I )  

fts - certify ncsuD8.i ncd8 > certify.ncd8& 

Now repeat the previous steps depending on the results of the test run. 
Use appropriate university name and version numbers. 

~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Notes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

It is expected that the maintenance team makes a error corrections for 
up to the first 2 0  reported failures that were requested by the correq.<name>. 
Certification (maintenance) team is supposed to mail back a 
message giving the location in their directories of the new 
and corrected code version, the new version number and one (or more 
if several changes had to be made) error correction report(s). 
You may if you wish use hardcopy correction reports, but there is a 
danger that the reports may evenuatly get separated from the code and 
corrections to which they refer. Furthermore if kept in electronic form 

Save the received location message and the correction report(s) into 
the "active" newcode sub-sub directory as "correction - report", e.g. 

I it may be easier to analyse them. 

newcode/ncsuD/v8/correction - report 

You procede then to pick-up the new version of the code and copy 
it into appropriate newcode sub-sub file, and ../code file (you may wish 
to use pointers/links to save space instead). Check that teams send you 
the code and the report with an appropriate version numbers everytime. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
> > 
> Check the error report tems send against the test report you have!!! > 
> If there is any indication at all that the difference may be due > 
> to an error in the "golden" code (i.e. supplied expected answers) > 
> freeze all testing and immediately inform ATS distribution site, > 
> i.e. NCSU (see fts87/ReadMe for address, phone etc.). > 
> > 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

It is extremely important for the success of the experiment that you 
keep not only the final, corrected version of each program, but that 
each intemediate version submitted for acceptance testing is saved 
and tagged with an appropriate version number and information about 
the changes/corrections (using the provided change form). 

The "certify" directory contains code and files that would be sent to each 
maintenance/certification team. It contains a basic rsdimu driver 
(to avoid interface problems) and instructions on its use. It also 
contains a sample input and output, and an electronic error report file. 
Whenever a change is made in the code it is expected that the programmer 
will record it using this report. The new version of the code and the error 



Sep 11 08:39 1987 accept.ReadMe - -  to certify Page 5 

and change report copy(ies) are returned to the experimenters. 

It is essential that each program be given a version number and 
associated with it the date of its creation. Every time a program is 
corrected its version changes and should be recorded in the correction 
report, as comments in the code itself, and should reflect in the file 
name for the new code (as kept in the "code" directory, and in the 
"newcode" directory in accept/). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



Sep 11 08:39 1987 certify.ReadMe Page 1 

for the cases you failed (suitable for use with your system are 
expected to in a file of the form 

Fault-Tolerant Software Experiment 

I Instructions for Certification Teams 

RSDIMU-ATS 3.O/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/12-May-87 

Welcome to the FTS certification project. This is a NASA sponsored experiment 
in Fault-Tolerant Software. Your part will be to find and correct any bugs in 
the software, under controlled conditions. The software means one of the twenty 
programs that were produced during the first phase of this experiment. 

You should be in possession of the following documentation (if you are not 
please see your experiment supervisor). 

RSDIMU specification (version 3.2/10-Feb-87) 

RSDIMU specification (version 2.1/19-Sep-85) 
~ 

You should also have a directory called "certify" sent to you by the 
FTS experimenters. In this directory you have the code for 
the driver, instructions for its use, and some test data. 
All file that are part of this testing package begin with 'fts ' and 
should not be modifed by you except under special circumstances, and 
after consultation with your experiment supervisor. You can 
of course copy them and then modify them at will. This is not advised. 

You will be receiving messages about needed corrections via e-mail. You 
should read them, correct the program to the best of your abilities, 
and test it. The data on which the program failed will either be attached 
to the message o r  will be sent to you separately. You can then use this 
data to test your code. 

The message with correction requests is expected to be of the form 
I 

correq.<name> 

errdata.<name>all 

Once you are satisfied that you have found the fault that is causing 
the error(s) you were requested to correct, you should fill out 
(make a copy) the error report and send it to your supervisor's e-mail address. 
Your site may also requTre you to fill in and submit a hard copy of the report. 
In the same message you should also tell us what is the current version 
3f your program and in which file one can find it (we shall need copies 
~ 3 f  your corrected programs so do not change them once you have sent a 



. 
S e p  11 08:39 1987 certify.ReadMe Page 2 

message that one is ready for pick-up). 

The program which you have just 
finished correcting must be in a file called <unam>XX.vYY, 
where <unam> is the agreed upon abbreviation for the university at which the 
code was originally produced (e.g. ncsu, ucla, uiuc, uva), XX 
stands for the letter and number associated with your program code, 
and YY is the current version of your code (you begin by incrementing the number 
in XX by one). For example C6, i.e. ncsuC6.vO7 means that you have updated 
ncsuC6 to version 7). YOU should also learn to update the version number 
in the program header in the style in which it is already there. 
If it is not part of the code you should add a comment header with the 
version number and date (e.g. ncsuC6.v07/15-Jul-86). A sample header is 
shown in fts - driver.p code. 

If in doubt please ask about details. 

Please bear in mind that the original specifications have been changed 
and that the latest version (the one you have) may require you not only 
to correct existing code, but also to add to it (for example missing calls to 
voter routines). 

File ReadMe data contains a description of the test cases that are being 
used to tesF your code. You should use this list in conjunction with 
the correq.<name> report to locate and identify errors. 

Please read the documentation you have received for the experiment. 
Note that you should keep all communications concerning the 
program you have been given between yourself and the experimenter, 
and should communicate through electronic mail 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

e-mail address is: fts 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Please feel free to ask e-mail questions about any p a r t  of this experiment. 

Note the following rules and guidelines: 

1. Do not change protections on any work-related files. 

2 .  Communications are restricted during this experiment as follows. 
You may not discuss any aspects of your work in this 
job with other programmers. Any work-related communication 
between you and the Professor is to be conducted via UNIX mail. We 
require this so in the event of an error o r  ambiguity in the 
specifications, or some other significant event, all students 
may be sent a copy of the mailed question and its answer. 

receive in a timely manner all mail concerning answers t o  
questions, any updates in the specifications etc. 
You should also fill in a time-sheet once a day. 

3 .  Every day you work you must log onto your UNIX account. In this way you will 



Sep 11 08:39 1987 certify.ReadMe Page 3 

4 .  Your Professor will read the UNIX mail once early in the morning and again 
in the late evening (Monday through Friday). All questions should be 
directed to him/her. 

5. It is your responsibility to read about UNIX tools you are not familiar 
or comfortable with. 

6. Once a week, on Friday, you should submit a weekly progress report, 
describing the work you did during the week (number and type of 
errors you have corrected, any problems you have encountered running 
the driver harness, hardware problems, the total time you have spent 
working on the project during the week, whether reading or 
using the computer, if reading you should specify what and which 
part of the specs or which error prompted you to that action, etc.). 
Report is to be submitted via e-mail. 

Good luck 



sep 11 08:39 1987 certify.ReadMe data Page 1 - 

Fault-Tolerant Software Experiment 

Data 

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/OS-Mar-87 

All the testcases in this release of the system comply with the 
specification version 3.2/10-Feb-87. A test case entry consists of an 
input record, and an output record. The latter contains what is believed 
to be the correct answer to the input record according to the 3.2 specs, 
and as generated/given by gold3v2.i. 

Your code will be tested with a set of extrema1 and special value ( E S V )  
test cases (796 of them) followed by 400 random test cases. 

The ESV test cases are based on an initial random case which was 
then modified step by step to check a particular function and/or 
option. In the following overview of the ESV data only the principal 
features of the data sub-classes are given, along with the 
principal variables that were changed at any one time. Changes are 
given with respect to a base test case (usually #l). 

1. A general random test case, DMODE=O (RTI, foofl.dat), 
votecontrol=O. Checks that all the voters are off. 

2-7. Test cases checking voter placement. Voters in the fts harness are 
activated via VOTECONTROL one at the time. VOTECONTROL 
activation order 1, 3, 2, 4, 8 16. 

Votecontrol and their activation results are detailed below: 

1 : Sets the Linnoise values of first 4 sensors to true. 
3 : Sets Linoffset value of first sensor to 0.0 
2 : Sets linout value of first sensor to BADDAT; 
4 : Sets SYSSTATUS to false. 
8 : sets the estimate values of acceleration values to 

16 : Sets garbage values in display output values. 
large values of 99999.0 

8 General test case, (base 1) DMODE = 88. 

9-19 base = case #1, systematic changes in DMODE testing for principal 
display modes (0,21-24,31-33,1,2,99). 
Check for various display modes which do valid displays, and 
the boundary display modes. 

20-27 Check for mod 4096 (all chans), base = #1, 0ffraw:selected 
values are increased with 4096 or 8192 to check if only 
lower order bits are being used. 



Sep 11 08:39 1987 certify.ReadMe - data Page 2 

28-52. base = #1, changes in DMODE and LINFAILIN, checking for different 
"blank" displays, specific failure display formats, and failures 
of one sensor (28-37), whole faces (two sensors, 38-43), 
and various combinations of four failing sensors (44-521, 
with one instance of eight failed sensors (50). 
The sensors are failed on input, to check for I display. 

(to ultimately test all values 0-99 by the end of the ESV set). 
Noise on calibration (OFFRAW) in steps of +/- 6, +/-12, 
+/- 18 and +/- 24. Case 57 test has LINSTD=8, DMODE=l and noise 
on calibration channel 1 of +/- 24 (8x3=24). 
Also checked are the display failure formats for LINNOISE 
values, and the correct use of variable LINSTD, and correct 
computation of calibration noise levels. 
6 and 24 were chosen because these were the boundary cases 
for noisiness for the linstd values chosen. 

53-85. base = #1, random activation of different display modes continues 

87-110 changes in LINSTD (9, 2,l with +/- 24 on i/p channels) 
to check correct use of LINSTD variable and sensitivity of 
the calibration procedure. 

86, 111-149. changes in RAWLIN, DMODE, LINFAILIN, various combinations of 
failures on input, noise and edgevector failures, base = #l. 
Values in RAWLIN are so changed as to reflect an assured failure 
in edgevector test, so that there are no ambiguities left. 
The values of DMODE are again chosen to test the display 
failure format. The failures are combined with failures on input, to 
see if the edgevector tests are properly employed. 

150-151 Large changes in misalign [i,6) field, only the sixth axis 
was chosen for contamination because according to the latest 
specifications that is the only angle not used in the 
rsdimu procedure. It use significantly changes output values only 
if its value is much larger than normal. Changes 
in the values of other angles will not provided new information. 

152-392. Test cases checking for the minimal sensor noise levels for 

393-796 

failure declaration. Cases 152-365 no prior failures. Cases 
366-392 prior failures on one and two faces. 
These test cases test the sensitivity requirements that 
all three edges fail the edgevector test before a failure is 
declared. False alarms are raised when only one or two edges fail. 
The normal value for the triplet threshold is 49 counts away from 
the correct figure for no prior failures on the rsdimu. The 
threshold values will change with the number and place 
of previous failures. 

CRA proposed test cases with various combinations of 
sensors failed on input and up to one additional sensor 
failed in the edge vector test. 

56 test cases with 1 sensor failed on input. 
168 cases with two sensors failed on input. 
120 cases with 3 sensors failed on input. 

30 cases with 4 sensors failed on input. 
8 cases with 7 sensors failed on input. 



f 

Sep 11 08:39 1987 certify.ReadMe - data Page 3 

and the rest are other combinations. 

Test cases numbers higher than 796 refer to random test cases. 



~ ~~~ __ ~ 

Sep 11 08:39 1987 certify.ReadMe - driver Page 1 

Fault-Tolerant Software Experiment 

DRIVER FOR THE RSDIMU CERTIFICATION 

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87 

* * * *  You do not need to read this if you will be using fts - compile and 

fts driver.p is a Pascal driver program to run your rsdimu procedure.You 
may-make modifications to suit your tastes, but it is adequate in its present 
form. To compile it you have to include your file containing rsdimu procedure 
in the place provided in the source code. (It has to have a . i  suffix to 
run successfully). Also you have to make a call to rsdimu procedure at 
the place designated. 

fts execute macros. - 

The compiler command would be: 

! pc -C - s  -0 driver fts - driver.p 

- s  option would circumvent any problems you may encounter due to mixed 
letter cases and non-standard i/o handling. 

The executable module is created in file "driver", which can be run 
as a shell command. 
The driver expects the testcase input in a format as shown in the file 
"fts errdata.sample". The output, after a successful run of the driver, 
is in fts sample.out. Note driver is interactive. 
If you wish to generate your own input data you will need to use the 
"NO - output - data" option. 

Note that there are several parameters which are special and are 
not part of the rsdimu variable/parameter set and are not given in 
the specs. These variables appear at the beginning of the fts errdata.sample 
file. The rsdimu parameters begin with 15.0000 f o r  obase. If you wish to 
use the fts driver.p on its own and without golden data then you need 
to retain on ly  the line before 15.0000 (votecontrol, case number). 
Votecontrol serves to control special voter routine actions (whether 
a particular voter changes the values of it parameters or not). It is used 
solely for testing placement and use of the voter routines. You need 
to leave it as is for regression testing of your code after correction. 
You may experiment with it if you wish to build you own test sets. 
You do not have to worry about it in the rsdimu code, the variable 
is taken care of in the driver code. 

The other parameters control the comparisons with golden answer and 
you do not need to use them, unless you provide full format of the 
file (with dummy golden answers for example). 



Sep 11 0 8 : 3 9  1987 certify.ReadMe for testing Page 1 - - 

Fault-Tolerant Software Experiment 

Testing RSDIMU code 

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/o!j-Mar-87 

Using the fts compile and fts execute macros is simple. Run them without 
any parameters to obtain the aescription of the paramters you need. The 
following sample should help. 

It is assumed that you have received correq.ncd6 and errdata.ncd6all 
from your experiment supervisor. 

To compile program ncsuD7 which is (let's assume s o )  in your certify 
file, and is the program you have just corrected run 

fts - compile ncsuD7 7 > c.7& 

When the run finishes check c.7 for compilation errors etc. If ok 
proceed (rsdimu.7 will contain driver+ncsuD7 executable code). 

fts execute 7 errdata.ncd6all ncsuD7 > x.7& - 

When job finishes check x . 7 .  rf there still are differences from the 
expected outputs go back and correct your code once more, otherwise 
submit error - reports and the new code to your supervisor. 

Make use of the correq.ncd6 and ReadMe data. - 



Sep 11 08:39 1987 data.ReadMe Page 1 

Fault-Tolerant Software Experiment 

DATA FOR THE ACCEPTANCE TESTING 

RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS) 

RSDIMU-ATS 3.O/PR/UNIX/FTS.NAsA-LaRC.Va/NCSU.CSC/o5-Mar-87 

All the testcases in this release of the system comply with the 
specification version 3.2/10-Feb-87. A test case entry consists of an 
input record, and an output record. The latter contains what is believed 
to be the correct answer to the input record according to the 3.2 specs, 
and as generated/given by gold3v2.i. 

The test cases are supplied in Pascal readable files. 
The format can be found in the fts prnt.p source code in accept/. 
The format in which the test cases-are given is suitable for use 
with the accept/fts accept. Use of the system in non-Vax and UNIX-like 
environments is described in nonVAX host directory, data may be 
re-generated using code suplied in fhe "generators" directory. 
The latter action is should not be undertaken without consultation with 
the ATS distribution site (NCSU). 

If you wish to print out all, or some, of the test cases use 
accept/fts - listdata. 

If you wish to compare (difference) test cases use fts - diff. 

This set of test cases was designed and generated for acceptance testing 
of the rsdimu code. It consists of a group of 7 9 6  extremal/special value 
(ESV) test cases and a group of 400 random test cases. There are four files 
of data: 

all .dat - ESV test cases, followed by random test cases 
(randomNCSU.dat, then randomCRA.dat). 

esv.dat - ESV test cases, only ( 7 9 6 ) .  

~ randNCSU.dat - random test cases, only (uniform sampling, 2 0 0 ) .  

I 
randCRA.dat - random test cases, only (shaped sampling, 2 0 0 ) .  

A successful pass through all the test cases gives an estimated lower 
limit on the reliability of the rsdimu code of about 0.992 (valid for 
the employed sampling profile). 

The all.dat set should provide 100% block coverage of the rsdimu 
code. If this is not the case (running fts accept with -x option will 
give the coverage info), one should very cgrefully examine the tested 
code in places where coverage was not provided. The nature of the 
rsdimu problem, and the specifications, is such that a thorough 
programmer can provide for situations and functions which are not 
explicitly handled in the specifications (e.g. singular matrices, 
large changes in the slope constants leading to large raw acceleration 



Sep 11 08:39 1987 data.ReadMe Page 2 

values). Redundant code of the type that cannot be excited according 
to the current specifications, but could possibly be needed under 
exceptional circumstances, should be tested by the programmers 
providing it. They should also provide test cases for these 
situations (if possible). Alternatively they should provide a written 
explanation of the cirumstances and reasons for including that 
particular code. The golden program gold3vl.i, for example has 5 blocks 
handling display of extrema1 input acceleration values (>log) which are 
not tested by the current acceptance data set since such large input 
values are outside the conversion range of the provided equations. 

The coverage figures should be considered only in the last stage of the 
acceptance testing, i.e. when all.dat cases have been passed without 
a failure, and all the corrections requests have been implemented 
(e.g. after the final regression pass through all.dat). 

The ESV data set is further described in the ReadMe esv file, and 
the random data sets are described in the ReadMe - random file. 



Sep 11 08:39 1987 data.ReadMe - esv Page 1 

Fault-Tolerant Software Experiment 

THE ESV DATA FOR THE ACCEPTANCE TESTING 

RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS) 

RSDIMU-ATS 3.O/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/O5-Mar-87 

The data file esv.dat contains 796 extrema1 and special (ESV) test 
cases. The test cases were designed to provide full functional coverage 
of the RSDIMU specifications v3.2/10-Feb-87. 

The test cases are based on an initial random case which was 
then modified step by step to check a particular function and/or 
option. In the following overview of the ESV data only the principal 
features of the data sub-classes are given, along with the 
principal variables that were changed at any one time. Changes are 
given with respect to a base test case (usually #l). 
Listing of all or some of the test cases can be obtained by running 
accept/fts listdata. Difference between test cases may be examined 
using fts - aiff. 

1. A general random test case, DMODE=O (RTI, foofl.dat), 
votecontrol-0. Checks that all the voters are off. 

2-7. Test cases checking voter placement. Voters in the fts harness are 
activated via VOTECONTROL one at the time. VOTECONTi?OL 
activation order 1, 3, 2 ,  4, 8 16. 

Votecontrol and their activation results are detailed below: 

1 : Sets the Linnoise values of first 4 sensors to true. 
3 : Sets Linoffset value of first sensor to 0.0 
2 : Sets linout value of  first sensor to BADDAT; 
4 : Sets SYSSTATUS to false. 
8 : sets the estimate values of acceleration values to 

16 : Sets garbage values in display output values. 
large values of 99999.0 

8 General test case, (base 1) DMODE = 88. 

9-19 base = case #1, systematic changes in DMODE testing for principal 
display modes (0,21-24,31-33,1,2,99). 
Check for various display modes which do valid displays, and 
the boundary display modes. 

values are increased with 4096 or 8192 to check if only 
lower order bits are being used. 

"blank" displays, specific failure display formats, and failures 

20-27 Check f o r  mod 4096 (all chans), base = #1, 0ffraw:selected 

28-52. base = #1, changes in DMODE and LINFAILIN, checking for different 



Sep 11 08:39 1987 data.ReadMe esv Page 2 - 

of one sensor (28-37), whole faces (two sensors, 38-43), 
and various combinations of four failing sensors (44-52), 
with one instance of eight failed sensors (50). 
The sensors are failed on input, to check for I display. 

53-85. base = #1, random activation of different display modes continues 
(to ultimately test all values 0-99 by the end of the ESV set). 
Noise on calibration (OFFRAW) in steps of +/- 6, +/-12, 
+/- 18 and +/- 24. Case 57 test has LINSTD=8, DMODE=l and noise 
on calibration channel 1 of +/- 24 (8x3=24). 
Also checked are the display failure formats for LINNOISE 
values, and the correct use of variable LINSTD, and correct 
computation of calibration noise levels. 
6 and 24 were chosen because these were the boundary cases 
for noisiness for the linstd values chosen. 

87-110 changes in LINSTD (9, 2,l with +/- 24 on i/p channels) 
to check correct use of LINSTD variable and sensitivity of 
the calibration procedure. 

86, 111-149. changes in RAWLIN, DMODE, LINFAILIN, various combinations of 
failures on input, noise and edgevector failures, base = #l. 
Values in RAWLIN are so changed as to reflect an assured failure 
in edgevector test, so that there are no ambiguities left. 
The values of DMODE are again chosen to test the display 
failure format. The failures are combined with failures on input, to 
see if the edgevector tests are properly employed. 

150-151 Large changes in misalign [i,6] field, only the sixth axis 
was chosen for contamination because according to the latest 
specifications that is the only angle not used in the 
rsdimu procedure. It use significantly changes output values only 
if its value is much larger than normal. Changes 
in the values of other angles will not provied new information. 

152-392. Test cases checking for the minimal sensor noise levels for 
failure declaration. Cases 152-365 no prior failures. Cases 
3 6 6 - 3 9 2  prior failures on one and two faces. 
These test cases test the sensitivity requirements that 
all three edges fail the edgevector testi before a failure is 
declared. False alarms are raised when only one or two edges fail. 
The normal value for the triplet threshold is 49 counts away from 
the correct figure for no prior failures on the rsdimu. The 
threshold values will change with the number and place 
of previous failures. 

393-796 CRA proposed test cases with various combinations of 
sensors failed on input and up to one additional sensor 
failed in the edge vector test. 

56 test cases with 1 sensor failed on input. 
168 cases with two sensors failed on input. 
120 cases with 3 sensors failed on input. 
30 cases with 4 sensors failed on input. 
8 cases with 7 sensors failed on input. 

and the rest are other combinations. 



Sep 11 08:39 1987 data.ReadMe - esv Page 3 

More detailed information about the ESV test cases can be obtained 
by displaying the differences between a chosen base case ( # 1  usually) 
and a series of other test cases. Utility shell script fts diff, 
based on the UNIX diff processor, is provided f o r  this purpose. 
By executing 

fts - diff esv.dat esvdiff 115 123 1 

you can obtain, for example, in file esvdiff differences in the input 
values of cases 115 to 123 with respect to test case #1 of the data file 
esv. dat . 
The CRA document regarding choice of random and ESV test cases was provided 
as a separate item (not in electronic form) with release 2.0  of RSDIMU-ATS. 



S,ep 11 08:39 1987 data.ReadMe random Page 1 - 

Fault-Tolerant Software Experiment 

THE RANDOM DATA FOR THE ACCEPTANCE TESTING 

RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS) 

RSDIMU-ATS 3.O/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/OS-Mar-87 

This set of 400 random test cases for rsdimu code is provided primarily 
for the purpose of estimating the lower limit on the reliability of the 
tested code, and as a check on the completeness of the ESV test cases. 
The test cases are completely independent, 
and no attempt was made to mimic a flight trajectory and 
the associated time correlation among the input variable values. 
Therefore any cumulative effects linked to time correlation or auto- 
correlation remain untested, here and in the extrema1 and special value 
(esv.dat) set. 

The random data are provide in two sub-sets: randomNCSU.dat and randomCRA.dat. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

randomNCSU.dat 

Within the employed sampling domain the distribution of the generated 
input values is essentially flat. ~t contains 2 0 0  test cases. 

In all cases the random data were generated using the random number 
generator provided with the Pascal comiler (pc, UNIX/Ultrix). Details of the 
mapping from the random numbers into the actual input variables are 
given below. More details will be supplied on request. The part of 
the code used to generate random input values is also enclosed 
(as fts NCSUzzrand.i), and it derives in part from the RTI random test 
harness-(September 85). 

The input variables randomly sampled, or computed on the basis of 
randomly sampled values are: 

offraw, linfailin, rawlin, misalign, normface, temp, phiv, thetav, psiv, 
phi, thetai, psii, dmode, linnoise, linfailout, scale0,1,2, obase, 
linstd and nsigt. 

A more thorugh understanding of the random generation process and of the 
resulting input profiles can be gained by studying the 
fts - NCSU2zrand.i code. 

The random set, randomNCSU.dat, consists of two hundred random test cases 
stratified into two sub-sets. The first one hundred test cases have 
the noise on sensors (rawlin) boosted by 200 counts everytime linfailout for a 
sensor is true. Thus the sensor noise level is guaranteed to exceed the 
sensitivity threshold of about 50  counts and the sensor should be 
recognized as failed. The second one hundred test cases, on the other 



Sep 11 08:39 1987 data.ReadMe - random Page 2 

hand, have the noise added as a uniform distribution between 1 and 
maxnoise-1 counts, and at half the uniform frequency for 0 and 
maxnoise, the latter value having been read in by the driver program. 
In this particular case maxnoise was 110, therefore the added noise 

1 was symmetrically centered around the threshold value of 55 counts. 

It is important to note that random test cases are intended to run 
~ after all ESV test cases have been successfully negotiated. There 
are special situations and combinations of variable values that are 
covered in ESV test cases and not covered by the sampling domain used 
to generate present random test cases. Our experience with the random 
testing of rsdimu code is that the sensitivity of the random test cases 
to errors is very low. Unless very detailed partitioning is employed 
(better to use ESV cases in that case) detection capabilities of the 
random test cases to distinct errors saturate extremely quickly. 
After 2 to 10 random test cases the same errors are usually detected 
over and over again (if not removed). Once past 100 random test cases 
detection of new, different, errors becomes an almost negligible 
event, unless the random sampling profile is changed and tuned to the 
character of the already detected faults, o r  partitions not previously 
covered are sampled. 

For all practical purposes the two sets of 100 test cases, are a single random 
set of 200 test cases, which if executed successfully, provides us with 
a lower limit for the rsdimu reliability (at the 95% confidence level) 
of about 0.985. 

initial random seed for 1st 100 cases is: 777 

initial random seed for 2nd 100 cases is: 1234567890 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

randomCRA.dat 

The second sub-set, randCRA.dat, was generated on the basis of the 
CRA document TM8602/26-Aug-86. 

CRA random test cases are generated with the specifications provided 
in the CEW documents (especially f o r  PHIV, PSIV and THETAV, NSIGT = 
2..7 etc). The calibration noise is normally distributed, and 
the number of noisy sensors during calibration is exponentially 
distributed with a parameter of 0.18. The edge vector test can fail 
one additional sensor, with random noise of upto 200 counts. 
No sensors fail on input. Generation details can be found in 
fts - CRAzzrand.i 

initial random seed is: 987654321 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

For all practical purposes the two sets of 2 0 0  test cases, are a single random 
set of 400 test cases, which if executed successfully, provides us with 
a lower limit for the rsdimu reliability (at the 95% confidence level) 
of about 0.992. 



c 

S s p  11 08:39 1987 data.ReadMe - random Page 3 

During the generation of the random test cases care is taken to examine 
the obtained data and to eliminate cases where more than one sensor 
fails in flight. 



Sep 11 08:39 1987 gold.ReadMe Page 1 

Fault-Tolerant Software Experiment 

THE GOLDEN DISPLAY AND RSDIMU CODES 

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87 

There are 2 files in this directory viz. display.i, and gold3vl.i 
:he sources correspond to specification version v3.2/10-Feb-87, 

It has been extensively tested as a stand alone module, and 
gives results in accordance with the specifications v3.2. 
It does not need any special declarations in the main program except for 
those which are in the RSDIMU procedure assumed to be 
globally available (only the type declarations.) 
To use this procedure just use standard #include compiler option, and 
the calling format 

, 
, disp1ay.i contains the display module extracted from the gold program. 

display (DISMODE, DISUPPER, DISLOWER); 

Use of the golden rsdimu follows the same rules as use of any other rsdimu 
code, and is fully explained in the specs (see also certify/driver.p). 

4 

L 


